
Ann Math Artif Intell (2013) 68:5–30
DOI 10.1007/s10472-012-9326-6

A behavioral perspective on social choice

Anna Popova · Michel Regenwetter · Nicholas Mattei

Published online: 16 January 2013
© Springer Science+Business Media Dordrecht 2013

Abstract We discuss what behavioral social choice can contribute to computational
social choice. An important trademark of behavioral social choice is to switch
perspective away from a traditional sampling approach in the social choice literature
and to ask inference questions: Based on limited, imperfect, and highly incomplete
observed data, what inference can we make about social choice outcomes at the level
of a population that generated those observed data? A second important consid-
eration in theoretical and behavioral work on social choice is model dependence:
How do theoretical predictions and conclusions, as well as behavioral predictions
and conclusions, depend on modeling assumptions about the nature of human pref-
erences and/or how these preferences are expressed in ratings, rankings, and ballots
of various kinds? Using a small subcollection from the Netflix Prize dataset, we
illustrate these notions with real movie ratings from real raters. We highlight the key
roles that inference and behavioral modeling play in the analysis of such data, partic-
ularly for sparse data like the Netflix ratings. The social and behavioral sciences can
provide a supportive role in the effort to develop behaviorally meaningful and robust
studies in computational social choice.
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1 Introduction

Voting rules and social choice methods have been used for centuries in order to reach
collective decisions. Increasingly, in computer science, data collection and reasoning
systems are moving towards distributed and multi-agent design paradigms [49]. With
this design shift comes the need to aggregate the (possibly disjoint) observations and
preferences of individual agents into an overall partial or complete ordering in order
to synthesize knowledge and data.

One of the most common methods of preference aggregation and group decision
making in human systems is voting. Many societies, both throughout history and
across the planet, use voting to arrive at collective decisions on a range of topics
from deciding what to have for dinner in a small group to declaring war as a nation.
Unfortunately, mathematical results in the field of social choice prove that there is no
perfect voting system and, in fact, voting systems can succumb to a host of problems.
Arrow’s Theorem demonstrates that any preference aggregation scheme for three
or more alternatives will fail to meet a set of simple fairness conditions [1]. Each
voting method violates one or more properties that most would consider important
for a voting rule (such as non-dictatorship) [5, 10, 50]. Similarly, the Gibbard–
Satterthwaite Theorem implies that every non-dictatorial voting rule is manipulable
[19, 46]. Moreover, one can easily create an example illustrating how competing vot-
ing rules can disagree on winners, losers, and social orders. Questions about voting
and preference aggregation have circulated in the mathematics and social choice
communities for centuries [2, 6, 17, 24, 45].

Many scholars wish to study how often and under what conditions individual
voting rules fall victim to violations of various voting laws and axioms [5, 10]. Due to
a lack of large, accurate datasets, many computer scientists, economists, and political
scientists have turned towards statistical distributions to generate election scenarios
in order to benchmark and analyze voting rules and other decision procedures
[16, 39, 40, 54]. Commonly used theoretical assumptions about the distribution of
preferences in the electorate such as the Impartial Culture assumption (IC, [16]) and
the Impartial Anonymous Culture assumption (IAC, [15]) are extreme symmetry
assumptions that represent maximum disagreement among voters. These knife edge
distributions lead to pessimistic (and arguably even nonsensical) predictions about
voting rules [11, 18, 39] which, in turn, can lead to questionable policy recommen-
dations. For instance, some scholars have concluded one should minimize turnout
and minimize the number of candidates running for office, if decisions are to be
reached by majority rule [48]. By and large, these approaches take a sampling, not
an inference, perspective on social choice.

Another famous but problematic theoretical benchmark is the notion of Con-
dorcet efficiency (the probability that a voting rule’s winner matches the “Con-
dorcet” winner, given that one exists). A candidate who can beat all other candidates
in pairwise elections (the Condorcet winner) remains a cornerstone in the normative
social choice literature. Low Condorcet efficiency under IC and IAC exacerbates the
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gloomy predictions from the axiomatic literature about the inability of an electorate
to arrive at a group decision [12, 13, 17, 18]. These statistical models may or may
not be grounded in reality and it is an open problem in both the political science
and social choice fields as to how, exactly, election data may be modeled realistically
[26, 35, 36, 51].

A fundamental problem in empirical and behavioral research into properties of
voting rules is the lack of large data sets to run empirical studies [35, 51]. There
have been studies of several distinct datasets but these are limited in both number
of elections analyzed [5, 33] and size of individual elections within the datasets
analyzed [10, 23, 51]. While it is too early to judge the frequency with which different
voting paradoxes occur in general, or to judge the consensus between voting methods
in general, the existing studies so far [25, 35, 38] have found little evidence of
Condorcet’s Voting Paradox [14, 21] (a cyclical majority ordering). At the same time,
preference domain restrictions such as single peakedness [4, 9, 35, 38] (where one
candidate out of a set of three is never ranked last), which is a sufficient conditional
to eliminate the Condorcet paradox, also did not account well for real data. Addi-
tionally, most of the studies have found a strong consensus between most voting rules
except Plurality [5, 10, 35].

2 What is behavioral social choice?

The supreme goal of behavioral social choice is to investigate social choice proce-
dures empirically while avoiding unnecessary and/or unsubstantiated assumptions
about human behavior. It is critical, in any fully rigorous behavioral paradigm, that
all assumptions about human behavior be stated as explicitly as possible. Ideally, any
such assumptions should be tested for their validity. Untested assumptions require
especially strong motivation and/or scrutiny. In this spirit, a first step in behavioral
social choice is to define individual voter preferences in a general and flexible
fashion, and then define consensus methods at a level that is applicable to such gen-
eral definitions of preference. Our first definition introduces mathematical concepts
and terminology as given by Roberts [41], and as commonly used by U.S. scholars
(but not as routinely used by European scholars, due to language differences).

Definition 1 Let C be a finite set of choice alternatives or candidates. A binary
(preference) relation R on C is a collection of ordered pairs of elements of C , i.e.,
R ⊆ C × C . We also write xRy for (x, y) ∈ R. If R and S are two (binary) rela-
tions on C , we write RS = {(z, y) ∈ C × C : ∃x ∈ C , zRx, xSy}. Let R−1 = {(x, y) ∈
C × C : yRx}, R = (C × C ) \ R, and IdC = {(c, c) : c ∈ C }. A binary relation
R on C is

complete if R ∪ R−1 ∪ IdC = C × C ,

asymmetric if R ∩ R−1 = ∅,

negatively transitive if R R ⊆ R,

transitive if RR ⊆ R.

A strict partial order is an asymmetric and transitive binary relation. An interval
order is a strict partial order R with the property that RR−1 R ⊆ R. A semiorder
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is an interval order R with the property that RRR−1 ⊆ R. A strict weak order is an
asymmetric and negatively transitive binary relation. A strict linear order is a tran-
sitive, asymmetric, and complete binary relation. If we replace “strict preference”
by “preference or indifference” then a strict partial/weak/linear order becomes a
“partial/weak/linear order.” We will assume asymmetric (“strict”) preference with-
out loss of generality.

Much of the social choice literature assumes that individual preferences are (strict)
linear orders or (strict) weak orders. Within the field of computational social choice
there is some use of other information models, specifically (strict) partial orders,
where questions of winner determination [55] and manipulation [7] have been
addressed. There has also been some work on winner determination and manip-
ulation when voters express probabilities over their preferences [8, 20]. However,
despite these forays into more complex information models, the bulk of the work in
computational social choice still assumes that strict linear orders are either available,
or that they are at least reasonable hypothetical constructs even if not directly ob-
servable. The goal of this paper is to highlight, by providing additional references and
concrete examples, the pitfalls that may befall scholars, e.g., in computational social
choice, as they move from the theoretical to the empirical.

A “profile” in classical voting theory is typically a mapping from the set of
individual preferences into the natural numbers, i.e., a vector of voter frequencies
or proportions indexed by the appropriate set of binary preferences, such as strict
linear orders. We will generalize that definition to include a range of behaviorally
important applications. First, it seems reasonable to assume asymmetry because it
simply captures “strict” preference (as opposed to “preference or indifference”). The
two key generalizations are that preferences can be any asymmetric binary relations
of any kind, and that we move from frequencies (or proportions) of binary relations
to probabilities of binary relations.

Definition 2 Let C be a finite set of choice alternatives or candidates. Let R denote
the collection of all asymmetric binary relations on C . A profile P is a probability
distribution over R:

P : R → [0, 1]
R �→ P(R).

The classical model where a profile is viewed as proportions of people who hold
various strict weak orders is a special case concentrating all probability mass on strict
weak orders and where P is just interpreted as a probability measure representing
proportions.

In order to define a broad range of consensus methods, such as, e.g., “scoring
rules,” for such general representations of preferences, we need a mathematical
concept of numerical ranks that applies to the general representation. We define
the “generalized rank” first axiomatized and discussed in [28].

Definition 3 Let C be a finite set of n many choice alternatives, i.e., |C | = n. The
differential �R(c) of any element c ∈ C with respect to a binary relation R ⊆
C × C is

�R(c) = |{a ∈ C : (a, c) ∈ R}| − |{b ∈ C : (c, b ) ∈ R}|.
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The generalized rank RankR(c) of c with respect to R is given by

RankR(c) = n + 1 + �R(c)
2

.

Note that generalized ranks are multiples of 1
2 . For strict linear orders, they are

the usual integer valued ranks associated with complete rankings without ties. Also,
note that, still with |C | = n,

RankR(c) = 1 ⇔ [(c, b ) ∈ R, ∀b ∈ C , b �= c]
and

RankR(c) = n ⇔ [(a, c) ∈ R, ∀a ∈ C , a �= c].
In other words, a candidate has generalized rank 1 if it is strictly preferred to all
other candidates, and an option has generalized rank n if all other options are strictly
preferred to it. We will utilize the concept of generalized rank both at the individual
preference level and at the social welfare level.

We are now ready to define the five social choice procedures we will consider
here, Condorcet, Borda, Plurality, Antiplurality, and Plurality Runoff, for general
representations of preferences. The definitions of Condorcet, Borda, Plurality, and
Antiplurality are from [29, 33], the definition of Plurality Runoff is new.

Definition 4 Let P be a profile on the collection R of binary relations on a finite
set C of choice alternatives with |C | = n. Let c, d ∈ C . Condorcet is a pairwise
comparison procedure:

c is Condorcet preferred to d ⇔
∑

R∈R
(c,d)∈R

P(R) >
∑

R′∈R
(d,c)∈R′

P(R′).

Borda, Plurality, and Antiplurality are scoring rules in that they assign scores
to choice alternatives as a decreasing function of their generalized ranks in an
individual’s preference:

Borda(c) =
∑

R∈R

P(R) [n − RankR(c)],

Plurality(c) =
∑

R∈R
RankR(c)=1

P(R),

Antiplurality(c) =
∑

R∈R
RankR(c)=n

P(R).

To derive the pairwise preferences for Borda, Plurality, and Antiplurality, we only
need to compare scores:

c is Borda preferred to d ⇔ Borda(c) > Borda(d),

c is Plurality preferred to d ⇔ Plurality(c) > Plurality(d),

c is Antiplurality preferred to d ⇔ Antiplurality(c) < Antiplurality(d).
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A winner under Plurality Runoff first requires that there must be a unique set of
two candidates, say {x, y} ⊆ C , such that x and y are the two options with the highest
plurality scores. If such a set exists, then

x is Plurality Runoff winner if
∑

R∈R
(x,y)∈R

P(R) >
∑

R′∈R
(y,x)∈R′

P(R′),

y is Plurality Runoff winner if
∑

R∈R
(x,y)∈R

P(R) <
∑

R′∈R
(y,x)∈R′

P(R′).

In all other cases, Plurality Runoff yields no winner.
Prior work on behavioral social choice has used such generalized definitions,

as well as similarly general definitions for various “utility” and “random utility”
representations, to compute social choice outcomes from a variety of empirically
generated inputs.

In earlier work, a number of papers [5, 10, 26, 27, 30–35, 52, 53] considered general
definitions of Condorcet and investigated the empirical prevalence of Condorcet
cycles, e.g., where A is Condorcet preferred to B, B is Condorcet preferred to C and
C is Condorcet preferred to A. They investigated approval voting ballots from which
they inferred probability distributions over strict linear orders [5, 10, 26, 27, 30, 35].
They also analyzed various national election survey data from France, Germany, and
the United States, where they interpreted numerical ratings of candidates as strict
weak orders or as semiorders [31, 32, 35]. This literature found virtually no evidence
for Condorcet cycles in empirical data. They also compared Condorcet and Borda
outcomes for strict linear order preferences inferred from approval voting ballots
and concluded that Condorcet and Borda led to virtually identical outcomes. More
recently, behavioral social choice researchers have found different consensus meth-
ods, such as Condorcet, Borda, and Plurality, to agree with each other extensively,
especially on candidates with generalized rank 1 or generalized rank n (out of n
candidates) [25, 36–38]. All of the empirical studies surveyed [5, 10, 23, 35, 37, 51]
came to a similar conclusion: there is scant evidence for occurrences of Condorcet’s
Paradox [24]. Many of these studies find no occurrence of majority cycles (and those
that find cycles find them in fewer than 1 % of elections). Additionally, each of these
(with the exception of Niemi and his study of university elections, which he observes
is a highly homogeneous population [23]) find almost no occurrences of either single-
peaked preferences [4] or the more general value-restricted preferences [35, 47].

Two important concepts have become prominent in prior behavioral social choice
analyses:

1. Inference: When investigating social choice outcomes on empirical data, one
should evaluate how ‘confident’ one can be about finding the ‘correct’ outcomes
if one thinks of the data as imperfect and incomplete reflections of the elec-
torate’s preference profile. So far, the main tools for evaluating the statistical
confidence or replicability of social choice outcomes have been a Bayesian
inference framework [29, 35] and a bootstrap approach [25, 37, 38]. In the
bootstrap, one samples N many observations with replacement from an original
data set of N many observations and records the outcomes of the social choice
procedures of interest. In our analysis for the results section, we used a pseudo-
random sampling procedure in MATLAB to draw such bootstrap samples of
size N each. We repeated this process 10,000 times to check what proportion
of 10,000 bootstrap samples replicated the social order found in the original
data set. The larger the number of bootstrap samples that match a result in the



A behavioral perspective on social choice 11

original profile, the higher the confidence in and replicability of the finding in
the original profile. The idea behind the bootstrap is to quantify how resilient the
social choice outcome is to perturbations in the data. Prior analyses of empirical
data with these inference tools have suggested that Condorcet paradoxes can be
ruled out with high replicability and that different social choice procedures agree
with each other on the winner and loser with high replicability.

2. Model Dependence: Theoretical and empirical analyses of social choice rules
can depend to various degrees on the modeling assumptions about individual
preferences. In the behavioral analyses we have cited [25, 36–38], the common
finding was that the election winners and social orders often depended on mod-
eling assumptions, but the absence of a Condorcet paradox and the agreement
among consensus methods did not hinge on a specific model being used.

The rest of this paper offers an illustration of behavioral social choice on new data.
We will see whether the earlier inference and model dependence findings appear to
extend readily to the much sparser data sets of the Netflix Prize. We will see that the
picture for the Netflix data will be more complicated.

3 Data

We have extracted consumer ratings from the Netflix Prize dataset [3]. Netflix is a
company based in the USA where users pay a flat monthly fee and either receive
DVD’s by mail or have video content delivered over the web. A central component
of the Netflix service is its recommendation engine. Netflix encourages users to
submit ratings (between 1 and 5 stars) of the movie they have just watched or of
any other movies, e.g., movies they may have seen on Netflix or elsewhere in the
past. Based on these ratings, users receive recommendations for other movies that
they may enjoy based on what they have viewed and/or rated thus far.

The Netflix dataset offers a vast amount of rating data; compiled and publicly
released by Netflix for its Netflix Prize [3]. There are 100,480,507 distinct ratings
in the database. These ratings cover a total of 17,770 movies and 480,189 distinct
users. Each user has provided ratings on a five-point scale (the rating � is the lowest,
the rating ����� is the highest) for any number of movies, with some raters having
rated as many as thousands of movies, while others have rated just a handful. While
all movies have at least one score, every user has rated only a small fraction of all
the movies. According to Netflix, the dataset contains every movie rating received
by Netflix, from its users, between early 2002, when Netflix started tracking the
data, and late 2007, when the competition for the Prize was announced. These data
have been anonymized to protect privacy and are conveniently coded for use by
researchers.

The Netflix data are rare in preference studies: Since users of the Netflix service
can expect to receive presumably higher quality recommendations from Netflix if
they respond truthfully to the rating prompt, there is an incentive for each user to
express sincere preference in their ratings. In the Netflix setup, the user is receiving a
tangible benefit (clearer and more accurate recommendations) for providing truthful
data. With Netflix’s catalog of over 17,000 movies, users need help sorting through all
the data, especially if they are interested in discovering great movies that they don’t
already know. This is in contrast to many other datasets which are compiled through
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surveys or other methods where the individuals questioned about their preferences
often have little or no stake in providing truthful responses. The Netflix rating system
also gives viewers a natural incentive to rate as many movies as possible, as long as
they have clearly formed preferences among them, since more information from the
user will presumably lead to more accurate and more relevant recommendations.

To illustrate the role of behavioral social choice in empirical studies, we selected
three sets of five movies from the dataset. The first two sets were more or less
selected at random. These movies had a fairly high number of joint ratings, that is,
users who had rated multiple movies out of the set. The third was selected so that
all five movies in the set had received a similar and large number of ratings. For this
last set, we found five movies that had all received 10,040 ± 10 user ratings. Brief
summaries of the movies we selected can be found in the top panels of Tables 1, 2
and 3. All movie descriptions and genre information are taken from the respective
movie page at the Internet Movie Database (www.imbd.com).

Tables 1–3 provide various types of summary information about the three movie
sets and their ratings. For example, Table 1 shows, for Movie Set 1, that only 91
raters offered ratings for movie A, “Bliss: Season 1,” and of these, 23 gave a �-rating
and 11 gave a �����-rating. In contrast, more than 150,000 viewers rated movie E,
“Lost in Translation.” The table also provides the arithmetic average of the star-
ratings for each movie among the raters who rated that given movie. Among those
who rated “Jaws,” the average rating is 3.89 stars, whereas among those who rated
“Bliss,” the average rating was 2.56 stars. It is not clear whether it is meaningful to use
an arithmetic average: we do not know whether these �-ratings form an interval scale,
according to which the difference between a �����-rating and a ���-rating expresses
the same “strength of preference” as the difference between a ���-rating and a
�-rating [41]. In other words, arithmetic averages could be meaningless summary
statistics [42–44]. The median rating is perhaps the more appropriate summary sta-
tistic, though much less refined. We report the medians for all movies in Tables 1–3.
A major rationale behind social choice aggregation methods is to use, as input into
the consensus method, only ordinal information from each judge.

In the usual incarnation, social choice theory uses ordinal, rather than quan-
titative, input about individual preferences as the theoretical primitive. However,
much social choice theory is based on the assumption that individual voters/judges
have asymmetric, complete and transitive (strict linear order) preferences among
the candidates/options. There is very little reason to believe this assumption in
the context of Netflix movie viewers, especially that individual preferences ought
to be complete. It does not make sense to assume that anyone even knows all of
these 17,000+ movies. It also makes little sense to assume that viewers have a strict
preference among every two movies, and this is reflected by the fact that Netflix only
uses a simple five-point scale for rating the movies. It also may not be legitimate to
assume complete preferences over groups of movies, say, if one attempted to reduce
the numbers by grouping movies into genres, release dates, and/or other criteria in
an effort to sort them into equivalence classes of sorts.

If we just consider the five movies in each of the three sets we have selected
for analysis, it is striking from Tables 1–3, that of those few people who rated all
movies in a given set not a single one mapped the movies one-to-one into ratings.
There is no evidence in these data, not even from a single rater, that would suggest

http://www.imbd.com
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Table 1 Movie Set 1: Synopsis (top panel), summary of ratings (center panel), and full ratings of
those 15 viewers who rated the entire movie set

Movie Set 1, Description:

Movie No. Title Year Genre Synopsis

3462 Bliss: Season 1 2002 Drama- A Showtime Original Series that
Romance explores the desires, passions and

fantasies of women.
798 Jaws 1975 Thriller A giant great white shark threatens a

small fishing community and a group
of men set out to stop it.

758 Mean Girls 2004 Comedy- A high school teen drama centering on
Drama two girls fighting over a boy.

1145 The Wedding 2001 Comedy- A wedding planners life is turned
Planner Romance upside down when she falls head

over heels for a client.
12232 Lost in 2003 Drama A movie star with a sense of emptiness,

Translation and a neglected newlywed meet in
Tokyo and form an unlikely bond.

Rating summary:

Rating A B C D E

Bliss: Jaws Mean The Wedding Lost in
Season 1 Girls Planner Translation

� 23 1,219 2,899 12,194 15,750
�� 23 4,527 9,773 23,238 23,578
��� 27 20,240 38,016 49,351 36,605
���� 7 31,606 38,099 37,366 41,143
����� 11 23,686 15,575 18,005 35,330

Number of raters: 91 81,278 104,362 140,154 152,406

Mean rating: 2.56 stars 3.89 stars 3.51 stars 3.18 stars 3.37 stars
Median rating: ��� ���� ���� ��� ����

Ratings of those 15 viewers who rated all five movies:

Number of Movies Generalized rank

raters A B C D E 1 5

1 � �� ��� �� �� C A
1 � ��� ���� ��� ����� E A
1 � ��� ����� ��� ���� C A
1 � ���� �� �� � B –
1 � ���� ���� �� ���� – A
1 �� ����� ��� ��� ����� – A
1 ��� �� ����� ���� ���� C B
2 ��� ��� ��� ��� �� – E
1 ��� ��� ����� ���� �� C E
1 ��� ���� ��� �� ���� – D
1 ��� ���� ��� ��� ����� E –
1 ��� ����� ���� ����� ���� – A
1 ��� ����� ����� ����� ����� – A
1 ���� ����� ��� �� �� B –
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Table 2 Movie Set 2: Synopsis (top panel), summary of ratings (center panel), and full ratings of
those 5 viewers who rated the entire movie set

Movie Set 2, Description:

Movie No. Title Year Genre Synopsis

15870 Anna 1967 Drama- A young wife of an older husband
Karenina Romance complicates her life by having

an affair.
12458 Splendor 1999 Comedy- A twenty-something starts a romantic

Romance affair with two men at the same time.
2568 StarGate SG-1: 2004 Action- A secret military team is formed to

Season 8 SciFi explore the StarGate.
2651 Dragon Ball Z: 1992 Animation- A team of super-humans fights

Super Android 13 Action an interplanetary force of androids.
197 Taking Lives 2004 Mystery- An FBI profiler is called in to

Thriller catch a serial killer.

Rating summary:

Rating A B C D E

Anna Splendor StarGate SG-1: Dragon Ball Z: Taking
Karenina Season 8 Super Android 13 Lives

� 29 102 49 460 2,900
�� 25 188 32 187 9,017
��� 61 406 129 422 27,651
���� 36 302 425 567 29,649
����� 22 127 1,177 790 12,043

Number of raters: 173 1,125 1,812 2,426 81,260

Mean rating: 2.98 stars 3.15 stars 4.46 stars 3.43 stars 3.48 stars
Median rating: ��� ��� ����� ���� ����

Ratings of those 5 viewers who rated all five movies:

Number of Movies Generalized rank

raters A B C D E 1 5

1 � � � � � – –
1 � � � � ��� E –
1 �� �� � � �� – –
1 ��� ����� ���� ����� ���� – A
1 ��� ����� ����� ���� ����� – A

that asymmetric, transitive, complete preferences are behaviorally valid. We should
indeed be wary of making such an assumption.

The insight that we have detailed information from very few users and the insight
that we should not assume preferences to be complete, have important implications
that are hard to overstate. In fact, one of the main take-home messages of this paper
is that we face two monumental challenges in evaluating consensus outcomes:

1. In any situation like the Netflix data sets, and even in most ballot profiles from
real elections, we only have very limited, incomplete, and possibly inaccurate
information about each individual’s preferences. This forces us to consider
consensus as an inference problem.
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Table 3 Movie Set 3: Synopsis (top panel), summary of ratings (center panel), and full ratings of
those 30 viewers who rated the entire movie set

Movie Set 3, Description:
Movie No. Title Year Genre Synopsis
14731 The Good 1993 Drama- A young boy moves in with his

Son Thriller relatives and begins tormenting his
young cousins.

17491 Like Mike 2002 Comedy- A young orphan becomes an NBA star
Family after finding a pair of Michael

Jordan’s shoes.
433 Untamed 1993 Drama- Girl meets boy, falls in love and

Heart Romance into tragedy.
5650 Buena Vista 1999 Documentary- Documentary about the life and

Social Club Music times of aging Cuban musicians.
13244 Striking 1993 Action- Police officer searches for the

Distance Crime true perpetrator of a murder.

Rating summary:
Rating A B C D E

Striking Untamed Buena Vista Like The Good
Distance Heart Social Club Mike Son

� 418 290 340 621 205
�� 1,354 980 777 1,264 902
��� 3,831 3,512 2,393 3,547 3,691
���� 3,278 3,384 3,938 3,126 3,808
����� 1,153 11,877 2,595 1,488 1,442
Number of raters: 10,034 10,043 10,043 10,046 10,048
Mean rating: 3.38 stars 3.55 stars 3.76 stars 3.36 stars 3.54 stars
Median rating: ��� ���� ���� ��� ����

Ratings of those 30 viewers who rated all five movies:
Number of Movies Generalized rank
raters A B C D E 1 5
2 � � � � � – –
1 � ��� ��� � � – –
1 �� ��� � � ���� E –
1 �� ��� ��� ��� �� – –
1 �� �� �� �� �� – –
1 ��� �� � �� ��� – C
1 ��� �� � ��� � – –
1 ��� �� ��� ��� ��� – B
1 ��� ��� �� �� �� – –
1 ��� ��� �� ��� ��� – C
1 ��� ��� ��� �� ���� E D
1 ��� ��� ��� ��� ��� – –
1 ��� ��� ���� �� ���� – D
1 ��� ��� ���� ���� � – E
1 ��� ���� � � � B –
1 ��� ���� �� ���� �� – –
1 ��� ���� ��� � ��� B D
1 ��� ����� ���� �� ��� B D
1 ���� � � ��� ���� – –
1 ���� � �� ��� ��� A B
1 ���� ��� �� ���� ���� – C
1 ���� ��� �� ����� ��� D C
1 ���� ��� ��� ��� ��� A –
1 ���� ���� ��� �� ��� – D
1 ���� ����� ��� ��� ���� B –
1 ���� ����� ����� ����� ����� – A
1 ����� �� ��� ����� ��� – B
1 ����� ����� �� ���� ���� – C
1 ����� ����� ����� ����� ����� – –

2. When we attempt to interpret data as partial indicators of preferences, we must
be highly attentive to the modeling assumptions we make and how they may
affect our substantive conclusion, such as, e.g., our inferences about the consen-
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Fig. 1 Hasse diagram of the
binary preference relation of a
hypothetical viewer who rated
all five movies. Arrows
indicate strict preference, with
arrows implied by transitivity
omitted

A
RankR(A) = 1

B
RankR(B) = 2.5

C
RankR(C) = 2.5

D
RankR(D) = 4

E
RankR(E) = 5

sus outcomes. In other words, we face a problem of potential model dependence
of our analyses and conclusions.

We highlight these two problems, because such concerns are second-nature to
quantitative or mathematical behavioral scientists, but, not being questions of com-
putational complexity per se, they may not be quite so salient in the computational
social choice community at large.

The goal of this paper is not to develop and find the most accurate and refined
model of movie rating behavior. That appears like a daunting task. Rather, we
illustrate the role of any such model in the analysis of social choice procedures.
For purposes of illustration, in this paper, we will thus use three simple models of
how binary preferences may be expressed in Netflix movie ratings. More precisely,
the three models specify how preferences can be inferred from movies ratings. One
model takes an “agnostic” view in that it specifically avoids assuming preferences that
involve unrated choice options. This model is based on the “strict partial order” or
“Zwicker” model of prior analyses of partial ranking ballots [38]. The second model
takes the “pessimistic” view, according to which each rater dislikes unrated movies
more than any movies she has rated so far. This model is motivated by the “strict
weak order” model used previously for the analysis of partial ranking ballots [37, 38]
according to which all candidates ranked on a partial ranking ballot are preferable
to all unranked candidates, and according to which the voter has no strict preference
among any unranked candidates. The third model takes a “anchor-and-adjust” point
of view, according to which the ‘default’ rating of a movie is ���, unless the viewer
has given the movie an explicit rating himself. All three models assume that a rater
prefers movie x to movie y whenever she gives x a higher rating than y.

Figure 1 shows the Hasse diagram of an example where a hypothetical person gave
ratings to all five movies, say, A: �����, B: ����, C: ����, D: � �, and E: �. Under all
three models, this translates into the binary relation

R = {(A, B), (A, C), (A, D), (A, E), (B, D), (B, E), (C, D), (C, E), (D, E)}
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AGNOSTIC MODEL

A
RankR(A) = 2

B
RankR(B) = 3

C
RankR(C) = 4

E
RankR(E) = 3

D
RankR(D) = 3

PESSIMISTIC MODEL ANCHOR-AND-ADJUST MODEL

A
RankR(A) = 1

B
RankR(B) = 2

C
RankR(C) = 3

E
RankR(E) = 4.5

D
RankR(D) = 4.5

A
RankR(A) = 1

B
RankR(B) = 3

C
RankR(C) = 5

E
RankR(E) = 3

D
RankR(D) = 3

Fig. 2 Hasse diagrams for three models of the binary preference relation of a hypothetical viewer
who has rated only some but not all movies in a set. The figure shows an arrow from a preferred
movie to a less liked movie, with arrows implied by transitivity omitted

depicted by the Hasse diagram in Fig. 1. The figure also shows the generalized
rank of each option in that preference relation: RankR(A) = 1 because A is strictly
preferred to all other options. RankR(B) = RankR(C) = 2.5, whereas D and E have
generalized ranks 4 and 5, respectively.

The models differ in how they deal with the many missing ratings. Figure 2
illustrates how the three models assign binary preference relations to viewers who
did not rate all five movies in a set. Imagine that a rater gives, say, A: ����, B: ���,
C: �, and does not rate D and E. According to the Agnostic model, this person prefers
movies they gave more stars to movies they gave fewer stars and has no other strict
preferences. This model yields a strict partial order, here, the binary relation

{(A, B), (B, C), (A, C)}.
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From the Pessimistic model’s view point, while this person prefers movies with more
stars to movies with fewer stars, the key difference to the first model is that unrated
movies are treated as though they had zero stars. This yields a strict weak order
where the unrated movies are tied at the bottom of the strict weak order, here

{(A, B), (A, C), (A, E), (A, F), (B, C), (B, E), (B, F), (C, E), (C, F)}.
The third model anchors all movies at a default ���-rating and then adjusts the
ratings of those movies that the viewer has indeed rated. Beyond that assumption,
the Anchor-and-Adjust model then assumes that this person prefers movies with
more stars to movies with fewer stars and has no other strict preferences, here

{(A, B), (A, C), (A, D), (A, E), (B, C), (D, C), (E, C)}.
Note that the three models are mutually irreconcilable in their assumptions about
unrated movies and the strict preference relationships between rated and unrated
movies.

4 Results

Table 4 summarizes our inferences made about the social orders under the five
consensus methods, using the three models, for the three Netflix movie sets. The top
panel shows our results for Movie Set 1, the center panel shows the results for Movie
Set 2, and the bottom panel those for Movie Set 3. The Agnostic model, Pessimistic
model, and the Anchor-and-Adjust model are arranged from left to right in each
panel.

For each social order, we also provide the replicability, by which we mean the
proportion of bootstrap samples (out of 10,000) that led to the same social order
as did the original data. For example, under the Pessimistic model, all bootstrap
samples yielded the social order EDCBA (ranked from best to worst) by Condorcet
and Borda, in Movie Sets 1 and 2, as did Plurality in Movie Set 2. In contrast, only
27 % of the 10,000 bootstrap samples replicated the social order marked [CEDBA]
under Antiplurality in Movie Set 1. All social orders that we replicated in fewer than
50 % of bootstrapped samples are marked by square brackets [. . . ]. Results with
replicability above 95 % are marked in bold. For instance, under the Anchor-and-
Adjust model interpretation of the data, we have high replicability for all rules in
Movie Set 2. Under the Agnostic model interpretation, we have low replicability
in most cases. Plurality Runoff only yields a winner, not a social order. Candidates
listed in set brackets are tied. For example, under the Agnostic model in Movie Set
1, Plurality yields the unique winner C, followed by a tie between B and E, followed
by a tie between A and D. This social order is, however, poorly replicable, as it only
occurred in 14 % of our 10,000 bootstrapped samples.

As we reviewed in Section 2, behavioral social choice analyses over the past
decade share several common features of their findings. As one shifts one’s gaze
away from random sampling out of highly artificial distributions like the Impartial
Culture, towards considering inference about an underlying population from real
empirical data, one perceives a landscape that is very different from that painted on
the basis of classical analytical results. On the rare occasion where, in past behavioral
social choice analyses, a Condorcet paradox could not be ruled out, some pairwise
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Table 4 Behavioral social choice inferences for Movie Sets 1, 2, and 3 under three interpretations of
numerical ratings

Movie Set 1

Agnostic Pessimistic Anchor-and-Adjust

Social Order Repl. Social Order Repl. Social Order Repl.

Condorcet BCEDA 0.99 EDCBA 1 BECDA 1
Borda BCAED 1 EDCBA 1 BCEDA 0.57
Plurality [C{B, E}{A, D}] 0.14 EDCBA 0.99 EDBCA 1
Antiplurality [C{B, D}EA] 0.11 [CEDBA] 0.27 ABCDE 1
Plur. Runoff C 0.61 E 1 E 1

Movie Set 2

Agnostic Pessimistic Anchor-and-Adjust

Social Order Repl. Social Order Repl. Social Order Repl.

Condorcet [C {cycle} A] 0.19 EDCBA 1 ECDBA 1
Borda [CDBAE] 0.26 EDCBA 1 ECDBA 1
Plurality E{A, B, C, D} 0.63 EDCBA 1 ECDBA 1
Antiplurality {B, C, D, E}A 0.86 [ECDBA] 0.03 ACBDE 0.99
Plur. Runoff E 0.63 E 1 E 1

Movie Set 3

Agnostic Pessimistic Anchor-and-Adjust

Social Order Repl. Social Order Repl. Social Order Repl.

Condorcet CBEAD 1 [CBEAD] 0.42 CEBDA 0.77
Borda BCEAD 1 [BCEAD] 0.2 CEBDA 0.78
Plurality [B{A, E}DC] 0.03 CDBAE 0.93 CBEDA 0.78
Antiplurality [{A,E}B{C,D}] 0.02 BAEDC 0.39 EBCAD 0.53
Plur. Runoff B 0.59 C 1 C 1

“Repl.” stands for bootstrapped replicability

margins were narrow enough that even slight deviations from the observed ballot
counts eliminated the paradox. In other words, the Concorcet paradox has been
rare and when it could not be ruled out, it had very poor replicability. Our findings
here are compatible with that pattern of findings. However, we have a bit of an
exception in that this appears to be the first time that we find somewhat (19 %)
replicable evidence for a Condorcet cycle. This cycle is located in the middle of the
social order for Movie Set 2 under the Agnostic model analysis and does not affect
the existence of a Condorcet winner and of a Condorcet loser. In all other Movie
Set 1 & 2 analyses, we have a strict linear order by Condorcet with high or perfect
replicability. In Movie Set 3, despite the large numbers of ratings, we are confronted
with low replicability for Condorcet under two models, i.e., there are narrow margins
that can be flipped fairly easily in the bootstrap.

Despite the centuries-old and ongoing debate about the relative merits of Con-
dorcet and Borda, the empirical evidence has suggested over and again that the two
rules frequently led to the same social order. Table 4 shows separately computed
inferences for Condorcet and Borda, but we can already see that in all cases where
we find social orders with high or near perfect replicability, they are also identical.
However, there are many cases (many more than in the prior literature we have
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cited) in which Condorcet or Borda or both are inferred with low or dismal replica-
bility. In other words, we have many cases where we cannot make solid inferences
from the data. This is particularly true for Movie Set 3.

Table 4 highlights the two key messages we hope to convey:

1. Inference: The social orders we computed from these data vary dramatically in
how confidently we can make inferences about them from the same set of data
if we treat these data as uncertain and incomplete reflections of the population’s
preferences. An individual preference enters the Plurality tally only when one
choice option is preferred to all other options and, hence, when one choice option
has generalized rank one. Preferences enter the Antiplurality tally only if they
have a choice option to which all other options are strictly preferred, hence if one
option has generalized rank five. For the Agnostic model, where we very rarely
have a single best or single worst movie for a given rater, Plurality, Antiplurality,
and Plurality Runoff depend on the few raters in Table 1 who identify a movie
with generalized rank one or five. For Movie Set 1, this leads to low replicability
of Plurality, Antiplurality, and Plurality Runoff. Interestingly, in Movie Set 2,
because only candidate E is ever at generalized rank 1 (by one rater), and only
candidate A is ever at generalized rank 5 (by two raters), the replicability for
Plurality and Antiplurality in Movie Set 2 is, in fact, not very low, because
more than half of bootstrapped samples include one or more such data points.
However, Plurality fails to yield more than a winner and Antiplurality fails to
yield more than a loser because there is not enough information in the ratings of
Table 2 to yield more consensus information. Hence, there is also not enough
information in the bootstrap samples to yield more consensus information.
Plurality, Antiplurality, and Plurality Runoff in Movie Set 2 hinge completely on
including the two or three informative raters of Table 2 in the tally. If we were
to drop the three raters in Table 2, then those three consensus methods would
completely collapse. This highlights the importance of considering an inference
perspective that takes into account how much information is really contained in a
given set of human data and how sensitive our conclusions are to minor or major
distortions in those data. When using the Agnostic model, our ability to draw
inferences for Plurality, Antiplurality and Plurality Runoff is very limited.

2. Model Dependence: Now, one might think that the easy way out of this prob-
lem is to simply add additional information to the data. This is where model
dependence comes into play. We know from the inference discussion above that
we often have very little confidence that we are able to extract the ‘correct’
social order for some of the procedures. Hence, to the extent that we gain
confidence through imputation of additional information, this confidence may be
gained at the cost of additional model dependence, that is, conclusions could very
much hinge on the methods by which we might impute additional information.
Imputing values for unrated movies can quickly ‘take over’ in that there can be
more imputed ratings than real ratings in the data being aggregated: The hypo-
thetical data may overwhelm the real data and create a false sense of confidence
in what the social outcomes are.

Our approach here has been to illustrate the effects of three simple models in our
analyses. The Agnostic model did not impute any binary preference information.
It captures the idea that viewers cannot possibly view all movies, hence a lack of
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Table 5 Movie Set 1, bootstrap replicability using 10,000 bootstrapped samples

Row and Column: Same Unique Winner

Agnostic Model

Condorcet Borda Plurality Antiplurality Plur. Runoff

Condorcet 1
Borda 1 1
Plurality 0.11 0.11 0.82
Antiplurality 0 0 0.28 0.39
Plur. Runoff 0.11 0.11 0.82 0.28 0.82

Pessimistic Model

Condorcet Borda Plurality Antiplurality Plur. Runoff

Condorcet 1
Borda 1 1
Plurality 1 1 1
Antiplurality 0.12 0.12 0.12 0.83
Plur. Runoff 1 1 1 0.12 1

Anchor-and-Adjust Model

Condorcet Borda Plurality Antiplurality Plur. Runoff

Condorcet 1
Borda 1 1
Plurality 0 0 1
Antiplurality 0 0 0 1
Plur. Runoff 0 0 1 0 1

Row and Column: Same Unique Loser

Agnostic Model

Condorcet Borda Plurality Antiplurality

Condorcet 1
Borda 0.003 1
Plurality 0 0 0
Antiplurality 0.86 0.003 0 0.94

Pessimistic Model

Condorcet Borda Plurality Antiplurality

Condorcet 1
Borda 1 1
Plurality 1 1 1
Antiplurality 1 1 1 1

Anchor-and-Adjust Model

Condorcet Borda Plurality Antiplurality

Condorcet 1
Borda 1 1
Plurality 1 1 1
Antiplurality 0 0 0 1
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Table 5 (continued)

Unique Row Winner & Column Loser Exist and Match

Agnostic Model

Condorcet Borda Plurality Antiplurality

Condorcet 0 0 0.003
Borda 0 0 0.003
Plurality 0 0 0.003
Antiplurality 0 0 0
Plur. Runoff 0 0 0 0.003

Pessimistic Model

Condorcet Borda Plurality Antiplurality

Condorcet 0 0 0
Borda 0 0 0
Plurality 0 0 0
Antiplurality 0 0 0
Plur. Runoff 0 0 0 0

Anchor-and-Adjust Model

Condorcet Borda Plurality Antiplurality

Condorcet 0 0 0
Borda 0 0 0
Plurality 0 0 1
Antiplurality 1 1 1
Plur. Runoff 0 0 0 1

Replicability of agreement (off-diagonal) and replicability of existence (diagonal) of an unambiguous
winner (generalized rank 1) in the upper panel, and an unambiguous unique loser (generalized rank
5) in the center panel. The bottom panel gives the replicability of agreement between a unique row
winner and a unique column loser

a rating may not tell us anything about the counterfactual whether they ‘would’
prefer a given unrated movie to one they have already rated. The model captures
this intuition formally with the explicit assumption that there is no strict preference
involving unrated options. This model led some voting rules to have almost no valid
input because very few raters gave enough information for the Agnostic model to
yield rankings, or at least single most or single least preferred choice options, from
individual decision makers. The Pessimistic model can be thought of as imputing
information where none was given, because it assumes that the users are indifferent
between all unrated movies and strictly prefer all their rated movies to all their
unrated movies. This would make sense if users did not rate a movie because they
did not deem it good enough to watch and rate. But clearly, there can be many other
reasons for not rating a movie. The Anchor-and-Adjust model captures the intuitive
notion that the default rating of a movie is ��� and that actual ratings could be
upwards adjustments for movies that the rater enjoyed and downwards adjustments
for movies that the rater did not enjoy. A similar, but more elaborate model, which
we did not include here, would be to use, say, each rater’s median ratings as their
individual default rating.
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Table 6 Movie Set 2, bootstrap replicability using 10,000 bootstrapped samples

Same Unique Winner

Agnostic Model

Condorcet Borda Plurality Antiplurality Plur. Runoff

Condorcet 0.66
Borda 0.66 1
Plurality 0 0 0.63
Antiplurality 0 0 0 0
Plur. Runoff 0 0 0.63 0 0.63

Pessimistic Model

Condorcet Borda Plurality Antiplurality Plur. Runoff

Condorcet 1
Borda 1 1
Plurality 1 1 1
Antiplurality 0.51 0.51 0.51 0.51
Plur. Runoff 1 1 1 0.51 1

Anchor-and-Adjust Model

Condorcet Borda Plurality Antiplurality Plur. Runoff

Condorcet 1
Borda 1 1
Plurality 1 1 1
Antiplurality 0 0 0 1
Plur. Runoff 1 1 1 0 1

Same Unique Loser

Agnostic Model

Condorcet Borda Plurality Antiplurality

Condorcet 0.51
Borda 0 1
Plurality 0 0 0
Antiplurality 0.46 0 0 0.86

Pessimistic Model

Condorcet Borda Plurality Antiplurality

Condorcet 1
Borda 1 1
Plurality 1 1 1
Antiplurality 0.49 0.49 0.49 0.80

Anchor-and-Adjust Model

Condorcet Borda Plurality Antiplurality

Condorcet 1
Borda 1 1
Plurality 1 1 1
Antiplurality 0 0 0 1
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Table 6 (continued)

Unique Row Winner & Column Loser Exist and Match

Agnostic Model

Condorcet Borda Plurality Antiplurality

Condorcet 0 0 0
Borda 0 0 0
Plurality 0 0.63 0
Antiplurality 0 0 0
Plur. Runoff 0 0.63 0 0

Pessimistic Model

Condorcet Borda Plurality Antiplurality

Condorcet 0 0 0
Borda 0 0 0
Plurality 0 0 0
Antiplurality 0 0 0
Plur. Runoff 0 0 0 0

Anchor-and-Adjust Model

Condorcet Borda Plurality Antiplurality

Condorcet 0 0 1
Borda 0 0 1
Plurality 0 0 1
Antiplurality 1 1 1
Plur. Runoff 0 0 0 1

Replicability of agreement (off-diagonal) and replicability of existence (diagonal) of an unambiguous
winner (generalized rank 1) in the upper panel, and an unambiguous unique loser (generalized rank
5) in the center panel. The bottom panel gives the replicability of agreement between a unique row
winner and a unique column loser

Table 4 shows that the social orders differ substantially within a movie set,
depending on the behavioral modeling assumptions that entered the analysis. The
three models are simple cases of a potentially large set of conceivable descriptive
models one may develop. We used these to illustrate how such models can impact
both the conclusions and the replicability of the conclusions one draws.

We now shift our attention from the social orders to just the winners and losers
under the various consensus methods.

Tables 5, 6 and 7 show the existence of unique winners, unique losers, and the
degree of agreement about winners and losers among consensus methods under the
two models for the three data sets. For example, the top panel of Table 5 shows, on
the diagonal, the existence of a unique winner (a movie with generalized rank 1) in
the social order, for each consensus method. Condorcet and Borda yielded a unique
winner in all 10,000 bootstrap samples under all three models for Movie Set 1. The
Anchor-and-Adjust model yielded unique winners with perfect replicability for every
consensus method. In the other models, antiplurality yielded such a unique winner
only in some of the bootstrap samples.

The off-diagonal in the top panel shows how often two rules yielded one and
the same movie with generalized rank 1, i.e., the same unique winner. The rates of
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Table 7 Movie Set 3, bootstrap replicability using 10,000 bootstrapped samples

Same Unique Winner

Agnostic Model

Condorcet Borda Plurality Antiplurality Plur. Runoff

Condorcet 1
Borda 0 1
Plurality 0 0.59 0.82
Antiplurality 0.01 0.03 0.09 0.63
Plur. Runoff 0 0.59 0.82 0.09 0.82

Pessimistic Model

Condorcet Borda Plurality Antiplurality Plur. Runoff

Condorcet 0.71
Borda 0.44 1
Plurality 0.54 0.30 1
Antiplurality 0.10 0.41 0 0.92
Plur. Runoff 0.54 0.30 1 0 1

Anchor-and-Adjust Model

Condorcet Borda Plurality Antiplurality Plur. Runoff

Condorcet 1
Borda 1 1
Plurality 1 1 1
Antiplurality 0 0 0 1
Plur. Runoff 1 1 1 0 1

Same Unique Loser

Agnostic Model

Condorcet Borda Plurality Antiplurality

Condorcet 1
Borda 1 1
Plurality 0 0 0.46
Antiplurality 0.37 0.37 0.20 0.83

Pessimistic Model

Condorcet Borda Plurality Antiplurality

Condorcet 0.82
Borda 0.72 1
Plurality 0.01 0.03 1
Antiplurality 0.03 0.01 0 1

Anchor-and-Adjust Model

Condorcet Borda Plurality Antiplurality

Condorcet 1
Borda 0.98 1
Plurality 0.87 0.87 1
Antiplurality 0.13 0.13 0 1
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Table 7 (continued)

Unique Row Winner & Column Loser Exist and Match

Agnostic Model

Condorcet Borda Plurality Antiplurality

Condorcet 0 0.02 0.54
Borda 0 0.10 0.30
Plurality 0.03 0.01 1
Antiplurality 0.01 0.03 0.07
Plur. Runoff 0.03 0.01 0 1

Pessimistic Model

Condorcet Borda Plurality Antiplurality

Condorcet 0 0.46 0.38
Borda 0 0 0.08
Plurality 0.02 0.02 0.03
Antiplurality 0 0 0
Plur. Runoff 0.02 0.02 0 0.03

Anchor-and-Adjust Model

Condorcet Borda Plurality Antiplurality

Condorcet 0 0 0
Borda 0 0 0
Plurality 0 0 0
Antiplurality 0 0 0
Plur. Runoff 0 0 0 0

Replicability of agreement (off-diagonal) and replicability of existence (diagonal) of an unambiguous
winner (generalized rank 1) in the upper panel, and an unambiguous unique loser (generalized rank
5) in the center panel. The bottom panel gives the replicability of agreement between a unique row
winner and a unique column loser

agreement vary substantially across rules and across models. The panel in the center
shows the corresponding results for movies with generalized rank 5 in the social
order, i.e., movies that are ranked strictly worse than any other movie, in a given
social order. Again the results are highly model dependent. Antiplurality, for which
we have hardly any valid ballots, yields essentially useless results. For the other rules,
using the Pessimistic and Anchor-and-Adjust model, we consistently have agreement
in Movie Set 1 with perfect replicability. Note that this analysis does not apply to
Plurality Runoff, which only yields a winner. The bottom panel in Table 5 shows
how often we find the situation that is so highly advertised in textbooks on social
choice: We search for an option that is the unique best option by one consensus
method and yet the unique worst option by another consensus rule. The results
are much more model-dependent than they have been in earlier papers. For Movie
Set 1 and the Pessimistic model, not once in 10,000 bootstrap iterations did we see a
movie have generalized rank one in one rule (row) and generalized rank 5 in another
rule (column). The same applies for the other models and voting rules, except for
Antiplurality, which completely hinges on whether a model generates many, some,
or virtually no ballots with individual preferences that rank some option as unique
worst. Table 5 highlights how little we can infer when we do not impute assumptions
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about preferences where no information was given by the movie rater, but also how
artificially we might inflate our confidence in conclusions drawn from data that have
a high imputed component, like the Pessimistic model.

As we move to Movie Sets 2 and 3, reported in Tables 6 and 7, we find a similar
picture: The winners, losers, and the relationship between consensus methods are
highly dependent on the modeling assumptions that entered the analysis. Likewise,
the bootstrap-based replicability highly depends on the modeling assumptions.

Like in previous empirical studies, we find that voting paradoxes do not appear
to loom nearly as large as they are made to appear in the axiomatic and sampling
literature. We do not find strong evidence that the best of one rule is the worst
of another rule in any analysis that actually treats many raters as providing valid
ballots. To understand how large the potential disagreements among voting methods
really loom requires that we tackle inference and model dependence. Unfortunately,
the behavioral analyses in Tables 4–7 produce much more dramatic and sobering
findings than did previous empirical studies on political survey and election ballot
data. Because the Netflix data, while being extensive, are so extraordinarily sparse,
the challenges associated with inference and model dependence appear to be strongly
amplified in these data. We also amplify that contemporary research may need
to shift focus away from classical problems of voting paradoxes to more pressing
challenges. Consistent with earlier behavioral social choice papers, the threat of no
Condorcet winner and/or the threat of dramatic disagreements among competing
consensus methods continue to be dwarfed by the much more real treat of inaccurate
inference about social preferences as well as the threat of their strong dependence
on modeling assumptions.

5 Conclusions and future directions

How can behavioral social choice interface with computational social choice? Imag-
ine a sensitive computer system protected by elaborate cryptography. The security
of this system might be called into question if an adversary learned that a high-level
user exclusively employed family birthdays and pet names as passwords, unless the
cryptographic protection somehow specifically planned for such structured behavior.
Similarly, behavioral insights could have extensive implications to computational
social choice, because the computational properties of consensus methods could be
affected profoundly by behavioral regularities in voter behavior.

Specifically, we hope that scholars in the computational social choice community
will continue to investigate how computational considerations in social choice are
affected by the two main points we highlight in this paper:

1. Behaviorally accurate evaluation of social choice outcomes depends on effective
inference from incomplete and possibly noisy or biased data.

2. Some social choice considerations can be profoundly dependent on modeling
assumptions about the nature of individual preferences and how they are ex-
pressed in the ballots, ratings, or rankings that are being aggregated.

We believe that those concerns are almost self-evident, especially in the analyses
we have reported. With data as incomplete and sparse as the Netflix data, accurate
modeling and reliable inference pose both undeniable and formidable challenges.
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Yet, the classical social choice literature has paid almost no attention to these
concerns. Our analysis has shown that treating preferences as strict linear orders or
strict weak orders may require researchers to impute vast amounts of information
not provided by the voters or raters. The resulting conclusions about the consensus
processes then often rest on computations that used more hypothetical than real data.
As social choice scholars, we do not wish to emulate the drunkard who lost his keys
in a dark parking lot and proceeded to search for them under a street light because it
was brighter there. Experts in recommender systems have recently started to tackle
similar challenges [22]. On the other hand, when making as few assumptions about
individual preferences as possible, as we attempted in the Agnostic model, we may
not even be able to draw inferences at all for some consensus methods because of
data sparsity.

Behavioral social choice has put inference and model dependence at the forefront
of its research paradigm, and hence, may provide some helpful guidance to scholars
interested in behaviorally adequate computational social choice. Future develop-
ments in computational social choice may take into account that strategic interaction,
manipulability, and computational complexity may be intertwined in complicated
ways with inference and model dependence at various levels. Realistically, both in-
dividuals and collectivities who want to compute strategic choices and/or manipulate
a consensus process need to account for inference and model dependence issues in
their respective computations.
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