
Chapter 5 Empirical Analysis of Voting Rules and Election Paradoxes

This chapter details work on empirically testing the rates of occurrence of many of the

paradoxes and issues that arise when using different voting rules. This work includes sur-

veying existing datasets and empirical verification studies; the identification and mining

of a novel dataset for theory testing; and extensive statistical analysis of the new dataset.

The study of voting systems often takes place in the theoretical domain due to a lack of

large samples of sincere, strictly ordered voting data. We derive several million elections

(more than all the existing studies combined) from publicly available data: the Netflix Prize

dataset [10]. The Netflix data is derived from millions of Netflix users who have an incen-

tive to report sincere preferences, unlike random survey takers. We evaluate each of these

elections under the Plurality, Borda, k-Approval, and Repeated Alternative Vote (RAV) vot-

ing rules. We examine the Condorcet Efficiency of each of the rules and the probability of

occurrence of Condorcet’s Paradox. We compare our votes to existing theories of domain

restriction (e.g., single-peakedness) and statistical models used to generate election data

for testing (e.g., Impartial Culture). We find a high consensus among the different voting

rules; almost no instances of Condorcet’s Paradox; almost no support for restricted pref-

erence profiles, and very little support for many of the statistical models currently used to

generate election data for testing. Portions of this work have been previously published in

refereed conference proceedings [86]. However, while the overall analysis is the same, this

chapter details a greatly extended version of the work including several hundred million

more elections than reported in the initial publication.

5.1 Motivation

As we have seen, voting rules and social choice methods have been used for centuries

in order to make group decisions. Increasingly, in computer science, data collection and
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reasoning systems are moving towards distributed and multi-agent design paradigms [96].

With this design shift comes the need to aggregate the (possibly disjoint) observations and

preferences of individual agents into a total ordering in order to synthesize knowledge and

data.

One of the most common methods of preference aggregation and group decision mak-

ing in human systems is voting. Many societies, both throughout history and across the

planet, use voting to arrive at group decisions on a range of topics from deciding what to

have for dinner to declaring war. Unfortunately, results in the field of social choice prove

that there is no perfect voting system and, in fact, voting systems can succumb to a host

of problems. Arrow’s Theorem demonstrates that any preference aggregation scheme for

three or more alternatives will fail to meet a set of simple fairness conditions [2]. Each

voting method violates one or more properties that most would consider important for a

voting rule (such as non-dictatorship) [61]. Questions about voting and preference aggre-

gation have circulated in the math and social choice communities for centuries [3, 27, 97].

Many scholars wish to empirically study how often and under what conditions individ-

ual voting rules fall victim to various voting irregularities [22, 61]. Due to a lack of large,

accurate datasets, many computer scientists and political scientists are turning towards sta-

tistical distributions to generate election scenarios in order to verify and test voting rules

and other decision procedures [111, 130]. These statistical models may or may not be

grounded in reality and it is an open problem in both the political science and social choice

fields as to what, exactly, election data looks like [124].

A fundamental problem in research into properties of voting rules is the lack of large

data sets to run empirical experiments [108, 124]. There have been studies of several dis-

tinct datasets but these are limited in both number of elections analyzed [22] and size of

individual elections within the datasets analyzed [61, 124]. While there is little agreement

about the frequency with which different voting paradoxes occur or the consensus between

voting methods, all the studies so far have found little evidence of Condorcet’s Voting
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Paradox [66] (a cyclical majority ordering) or preference domain restrictions such as

single peakedness [13] (where one candidate out of a set of three is never ranked last).

Additionally, most of the studies find a strong consensus between most voting rules except

Plurality [22, 61, 108].

As the computational social choice community continues to grow there is increasing

attention on empirical results (see, e.g., [130]). The empirical data will support and justify

the theoretical concerns prevalent in the literature and that we have discussed in previous

chapters [33,57]. Walsh explicitly called for the establishment of a repository of voting data

in his COMSOC 2010 talk [131]. We begin to respond to this call through the identification,

analysis, and posting of a new repository of voting data.

In this Chapter we detail the discovery and evaluation of an extremely large number of

distinct 3 and 4 candidate elections derived from a novel dataset. We begin in Section 5.2

with a survey of the datasets that are commonly used in the literature. We then detail

in Section 5.3 our new dataset, including summary statistics and a basic overview of the

data. We then move into Section 5.4 which is broken into multiple subsections where we

attempt to answer many of the questions about voting. Section 5.4.1 details an analysis that

attempts to answer the questions “How often does Concert’s Paradox occur?” and “How

often does any voting cycle occur?” We continue with Section 5.4.2 which looks at the

prevalence of single peaked preferences and other domain restricted election profiles [13,

117]. Section 5.4.3 investigates the consensus between multiple voting rules. We evaluate

our millions of elections under the voting rules: Plurality, Copeland, Borda, Repeated

Alternative Vote, and k-Approval. In Section 5.4.4 we evaluate our new dataset against

many of the statistical models that are in use in the ComSoc and social choice communities

to generate synthetic election data. We conclude in Section 5.5 with observations about our

data in the context election systems and the current trends in computational social choice.
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5.2 Survey of Existing Datasets

The literature on the empirical analysis of large voting datasets is somewhat sparse, and

many studies use the same datasets [61, 124]. These problems can be attributed to the lack

of large amounts of data from real elections [108]. Chamberlin et al. [22] provided em-

pirical analysis of five elections of the American Psychological Association (APA). These

elections range in size from 11,000 to 15,000 ballots (some of the largest elections studied).

Within these elections there are no cyclical majority orderings and, of the six voting rules

under study, only Plurality fails to coincide with the others on a regular basis. Similarly,

Regenwetter et al. analyzed APA data from later years [109] and observed the same phe-

nomena: a high degree of stability between elections rules. Felsenthal et al. [61] analyzed

a dataset of 36 unique voting instances from unions and other professional organizations

in Europe. Under a variety of voting rules Felsenthal et al. also found a high degree of

consensus between voting rules (with the notable exception of Plurality).

All of the empirical studies surveyed [22, 61, 95, 108, 109, 124] came to a similar con-

clusion: there is scant evidence for occurrences of Condorcet’s Paradox [97]. Many of

these studies find no occurrence of majority cycles (and those that find cycles find them in

rates of much less than 1% of elections). Additionally, each of these (with the exception

of Niemi and his study of university elections, which he observes is a highly homogeneous

population [95]) find almost no occurrences of either single-peaked preferences [13] or the

more general value-restricted preferences [117].

Given this lack of data and the somewhat surprising results regarding voting irregulari-

ties, some authors have taken a more statistical approach. Over the years multiple statistical

models have been proposed to generate election pseudo-data to analyze (e.g., [108, 124]).

Gehrlein [66] provides an analysis of the probability of occurrence of Condorcet’s Para-

dox in a variety of election cultures. Gehrlein exactly quantifies these probabilities and

concludes that Condorcet’s Paradox probably will only occur with very small electorates.

Gehrlein states that some of the statistical cultures used to generate election pseudo-data,
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specifically the Impartial Culture, may actually represent a worst-case scenario when an-

alyzing voting rules for single-peaked preferences and the likelihood of observing Con-

dorcet’s Paradox [66]

Tideman and Plassmann have undertaken the task of verifying the statistical cultures

used to generate pseudo-election data [124]. Using one of the largest datasets available,

Tideman and Plassmann find little evidence supporting the models currently in use to gen-

erate election data. Additionally, Tideman and Plassmann propose several novel statistical

models which better fit their empirical data.

5.3 The New Data

We have mined strict preference orders from the Netflix Prize Dataset [10]. The Netflix

dataset offers a vast amount of preference data; compiled and publicly released by Netflix

for its Netflix Prize [10]. There are 100,480,507 distinct ratings in the database. These

ratings cover a total of 17,770 movies and 480,189 distinct users. Each user provides a

numerical ranking between 1 and 5 (inclusive) of some subset of the movies. While all

movies have at least one ranking it is not that case that all users have rated all movies.

The dataset contains every movie rating received by Netflix, from its users, between when

Netflix started tracking the data (early 2002) up to when the competition was announced

(late 2005). This data has been perturbed to protect privacy and is conveniently coded for

use by researchers.

The Netflix data is rare in preference studies: it is more sincere than most other prefer-

ence data sets. Since users of the Netflix service will receive better recommendations from

Netflix if they respond truthfully to the rating prompt, there is an incentive for each user to

express sincere preference. This is in contrast to many other datasets which are compiled

through surveys or other methods where the individuals questioned about their preferences

have no stake in providing truthful responses.

We define an election as E(m,n), where m is a set of candidates, {c1, . . . ,cm}, and n is a
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set of votes. A vote is a strict preference ordering over all the candidates c1 > c2 > · · ·> cm.

For convenience and ease of exposition we will often speak in the terms of a three candidate

election and label the candidates as A,B,C and preference profiles as A> B>C. All results

and discussion can be extended to the case of more than three candidates. A voting rule

takes, as input, a set of candidates and a set of votes and returns a set of winners which may

be empty or contain one or more candidates. In our discussion, elections return a complete

ordering over all the candidates in the election with no ties between candidates (after a

tiebreaking rule has been applied). The candidates in our data set correspond to movies

from the Netflix dataset and the votes correspond to strict preference orderings over these

movies. We break ties according to the lowest numbered movie identifier in the Netflix set;

these are random, sequential numbers assigned to every movie.

We construct vote instances from this dataset by looking at combinations of three

movies. If we find a user with a strict preference ordering over the three moves, we tally

that as a vote. For example, given movies A,B, and C: if a user rates movie A = 1, B = 3,

and C = 5, then the user has a strict preference profile over the three movies we are consid-

ering and hence a vote. If we can find 350 or more votes for a particular movie triple then

we regard that movie triple as an election and we record it. We use 350 as a cutoff for an

election as it is the number of votes used by Tideman and Plassmann [124] in their study

of voting data. While this is a somewhat arbitrary cutoff, Tideman and Plassmann claim

it is a sufficient number to eliminate random noise in the elections [124]. We use the 350

number so that our results are directly comparable to the results reported by Tideman and

Plassmann.

The dataset is too large to use completely (
(17770

3

)
≈ 1× 1012) and we have therefore

subdivide. We have divided the movies into 10 independent (non-overlapping with respect

to movies), randomly drawn samples of 1777 movies. This completely partitions the set of

movies. For each sample we search all the
(17770

3

)
≈ 9.33×108 possible elections for those

with more than 350 votes. For 3 candidate elections, this search generated 14,003,522
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Figure 5.1: Empirical CDF of Set 1 for 3 candidate elections.
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Figure 5.2: Empirical CDF of Set 1 for 4 candidate elections.
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distinct movie triples in total over all the subdivisions. Not all users have rated all movies

so the actual number of elections for each set is not consistent. The maximum election size

found in the dataset is 24,670 votes; metrics of central tendency are presented in Tables 5.3

and 5.3. Figures 5.1 and 5.2 show the empirical cumulative distribution functions (ECFD)

for Set 1 with 3 and 4 candidates respectively. The other set CDF’s are similar.

Table 5.1: Summary statistics for 3 candidate elections.

Set 1 Set 2 Set 3 Set 4 Set 5
Min. 350.0 350.0 350.0 350.0 350.0

1st Qu. 443.0 438.0 440.0 435.0 435.0
Median 610.0 592.0 597.0 583.0 581.0
Mean 964.8 880.6 893.3 843.3 829.9

3rd Qu. 1,011.0 958.0 960.0 921.0 915.0
Max. 18,270.0 19,480.0 19,040.0 17,930.0 12,630.0

Elements 1,453,012.0 1,640,584.0 1,737,858.0 1,495,316.0 1,388,892.0
Set 6 Set 7 Set 8 Set 9 Set 10

Min. 350.0 350.0 350.0 350.0 350.0
1st Qu. 435.0 435.0 435.0 441.0 433.0
Median 584.0 585.0 580.0 600.0 573.0
Mean 853.2 868.4 841.3 862.7 779.2

3rd Qu. 923.0 935.0 911.0 963.0 876.0
Max. 20,250.0 24,670.0 21,260.0 17,750.0 13,230.0

Elements 1,344,775.0 931,403 1,251,478 1,500,040 1,260,164

Using the notion of item-item extension [70] we attempted to extend every triple found

in the initial search. Item-item extension allows us to trim our search space by only search-

ing for 4 movie combinations which contain a combination of 3 movies that was a valid

voting instance. For each set we only searched for extensions within the same draw of

1777 movies, making sure to remove any duplicate extensions. The results of this search

are summarized in Table 5.3. For 4 candidate elections, this search generated 11,362,358

distinct movie triples over all subdivisions. Our constructed datasets contains more than

5 orders of magnitude more distinct elections than all the previous studies combined and

the largest single election contains slightly more votes than the largest previously studied

election from data.
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Table 5.2: Summary statistics for 4 candidate elections.

Set 1 Set 2 Set 3 Set 4 Set 5
Min. 350.0 350.0 350.0 350.0 350.0

1st Qu. 397.0 390.0 392.0 388.0 386.0
Median 471.0 450.0 458.0 446.0 440.0
Mean 555.6 512.2 532.7 508.0 490.2

3rd Qu. 623.0 566.0 588.0 558.0 514.0
Max. 3,519.0 2,965.0 4,032.0 2,975.0 2,192.0

Elements 1,881,695.0 1,489,814.0 1,753,990 1,122,227.0 1,032,874
Set 6 Set 7 Set 8 Set 9 Set 10

Min. 350.0 350.0 350.0 350.0 350.0
1st Qu. 389.0 390.0 388.0 383.0 380.0
Median 449.0 454.0 447.0 432.0 424.0
Mean 512.2 521.3 513.0 475.8 468.2

3rd Qu. 563.0 579.0 561.0 521.0 507.0
Max. 3,400.0 3,511.0 3,874.0 2,574.0 2,143.0

Elements 1,082,377.0 642,537 811,130 1,117,798 427,916

The data mining and experiments were performed on a pair of dedicated machines with

dual-core Athlon 64x2 5000+ processors and 4 gigabytes of RAM. All the programs for

searching the dataset and performing the experiments were written in C++. All of the

statistical analysis was performed in R using RStudio.

The initial search of three movie combinations took approximately 36 hours (paral-

lelized over the two cores) for each of the ten independently drawn sets. The four movie

extension searches took approximately 250 hours per set. Computing the results of the

various voting rules, checking for domain restrictions, and checking for cycles took ap-

proximately 20 hours per dataset. Calibrating and verifying the statistical distributions

took approximately 20 hours per dataset. All the computations for this project are straight-

forward, the benefit of modern computational power allows our parallelized code to more

quickly search the billions of possible movie combinations.
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5.4 Analysis and Discussion

We have found a large correlation between each pair of voting rules under study with the ex-

ception of Plurality (when m = 3,4) and 2-Approval (when m = 3). A Condorcet Winner

is a candidate who is preferred by a majority of the voters to each of the other candidates in

an election [61]. The voting rules under study, with the exception of Copeland, are not Con-

dorcet Consistent: they do not necessarily select a Condorcet Winner if one exists [97].

Therefore, we also analyze the voting rules in terms of their Condorcet Efficiency, the rate

at which the rule selects a Condorcet Winner if one exists [93]. In Section 5.4.3 we see that

the voting rules exhibit a high degree of Condorcet Efficiency in our dataset. The results

in Section 5.4.1 show extremely small evidence for cases of single peaked preferences and

very low rates of occurrence of preference cycles. Finally, the experiments in Section 5.4.4

indicate that several statistical models currently in use for testing new voting rules [111] do

not reflect the reality of our dataset. All of these results are in keeping with the analysis of

other, distinct, datasets [22,61,95,108,109,124] and provide support for their conclusions.

5.4.1 Preference Cycles

Condorcet’s Paradox of Voting is the observation that rational group preferences can be

aggregated, through a voting rule, into an irrational total preference [97]. It is an important

theoretical and practical concern to evaluate how often the scenario arises in empirical data.

In addition to analyzing instances of total cycles (Condorcet’s Paradox) involving all can-

didates in an election, we check for two other types of cyclic preferences. We also search

our results for both partial cycles, a cyclic ordering that does not include the top candidate

(Condorcet Winner), and partial top cycles, a cycle that includes the top candidate but

excludes one or more other candidates [61].

Tables 5.3 and 5.4 summarize the rates of occurrence of the different types of voting

cycles found in our data sets. The cycle counts for m = 3 are all equivalent due to the

fact that there is only one type of possible cycle when m = 3. There is an extremely low
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instance of total cycles for all our data (< 0.11% of all elections). This corresponds to

findings in the empirical literature that support the conclusion that Condorcet’s Paradox

has a low incidence of occurrence. Likewise, cycles of any type occur in rates < 0.4% and

therefore seem of little practical importance in our dataset as well. Our results for cycles

that do not include the winner mirror the results of Felsenthal et al. [61]: many cycles occur

in the lower ranks of voters’ preference orders in the election due to the voters’ inability to

distinguish between, or indifference towards, candidates the voter has a low ranking for or

considers irrelevant.
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5.4.2 Domain Restrictions

Black first introduced the notion of single-peaked preferences [13], a domain restriction

that states that the candidates can be ordered along one axis of preference and there is

a single peak to the graph of all votes by all voters if the candidates are ordered along

this axis. Informally, the idea is that every member of the society has an (not necessarily

identical) ideal point along a single axis and that, the farther an alternative is from the bliss

point, the lower that candidate will be ranked. A conical example is that everyone has a

preference for the volume of music in a room, the farther away (either louder or softer) the

music is set, the less prefered that volume is.

This is expressed in an election as the scernio when some candidate, in a three candidate

election, is never ranked last. The notion of restricted preference profiles was extended by

Sen [117] to include the idea of candidates who are never ranked first (single-bottom) and

candidates who are always ranked in the middle (single-mid). Domain restrictions can be

expanded to the case where elections contain more than three candidates [3]. Preference

restrictions have important theoretical applications and are widely studied in the area of

election manipulation. Many election rules become trivially easy to affect through bribery

or manipulation when electorates preferences are single-peaked [19].

Table 5.5 and Table 5.6 summarizes our results for the analysis of different restricted

preference profiles. There is (nearly) a complete lack (10 total instances over all sets)

of preference profile restrictions when m = 4 and near lack ( < 0.05% ) when m = 3.

It is important to remember that the underlying objects in this dataset are movies, and

individuals, most likely, evaluate movies for many different reasons. Therefore, as the

results of our analysis confirm, there are very few items that users rate with respect to a

single dimension.
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5.4.3 Voting Rules

The variety of voting rules and election models that have been implemented or “improved”

over time is astounding. Arrow shows that any preference aggregation scheme for three or

more alternatives cannot meet some simple fairness conditions [2]. This leads most schol-

ars to question “which voting rule is the best?” We analyze our dataset under the voting

rules Plurality, Borda, 2-Approval, and Repeated Alternative Vote (RAV). We briefly de-

scribe the voting rules under analysis. A more complete treatment of voting rules and their

properties can be found in Nurmi [97], Arrow, Sen, and Suzumura [3], or Section 2.2.1.

Plurality: Plurality is the most widely used voting rule [97] (and, to many Americans,

synonymous with the term “voting”). The Plurality score of a candidate is the sum of all the

first place votes for that candidate. No other candidates in the vote are considered besides

the first place vote. The winner is the candidate with the highest score.

k-Approval: Under k-Approval voting, when a voter casts a vote, the first k candidates

each receive the same number of points. In a 2-Approval scheme, the first 2 candidates of

every voter’s preference order would receive the same number of points. The winner of a

k-Approval election is the candidate with the highest total score.

Copeland: In a Copeland election each pairwise contest between candidates is con-

sidered. If candidate a defeats candidate b in a head-to-head comparison of first place votes

then candidate a receives 1 point; a loss is−1 and a tie is worth 0 points. After all head-to-

head comparisons are considered, the candidate with the highest total score is the winner

of the election.

Borda: Borda’s System of Marks involves assigning a numerical score to each posi-

tion. In most implementations [97] the first place candidate receives c−1 points, with each

candidate later in the ranking receiving one less points down to 0 points for the last ranked

candidate. The winner is the candidate with the highest total score.

Repeated Alternative Vote: Repeated Alternative Vote (RAV) is an extension of the

Alternative Vote (AV) into a rule which returns a complete order over all the candidates
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[61]. For the selection of a single candidate there is no difference between RAV and AV.

Scores are computed for each candidate as in Plurality. If no candidate has a strict majority

of the votes the candidate receiving the fewest first place votes is dropped from all ballots

and the votes are re-counted. If any candidate now has a strict majority, they are the winner.

This process, for c candidates, is repeated up to c− 1 times [61]. In RAV this procedure

is repeated, removing the winning candidate from all votes in the election after they have

won, until no candidates remain. The order in which the winning candidates were removed

is the total ordering of all the candidates.

We follow the analysis outlined by Felsenthal et al. [61]. We establish the Copeland

order as “ground truth” in each election; Copeland always selects the Condorcet Winner

if one exists and many feel the ordering generated by the Copeland rule is the “most fair”

when no Condorcet Winner exists [61, 97]. After determining the results of each election,

for each voting rule, we compare the order produced by each rule to the Copeland order and

compute the Spearman’s Rank Order Correlation Coefficient (Spearman’s ρ) to measure

similarity [61].

Table 5.7 and Table 5.8 lists the mean and standard deviation for Spearman’s Rho be-

tween the various voting rules and Copeland. All sets had a median value of 1.0. Our

analysis supports other empirical studies in the field that find a high consensus between the

various voting rules [22, 61, 109]. Plurality performs the worst as compared to Copeland

across all the datasets. 2-Approval does fairly poorly when m= 3 but does surprisingly well

when m = 4. We suspect this discrepancy is due to the fact that when m = 3, individual

voters are able to select a full 2/3 of the available candidates.
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Table 5.7: Voting results (Spearman’s ρ) for 3 candidate elections.

Set 1 Set 2 Set 3 Set 4 Set 5

Plurality
Mean 0.9277 0.9275 0.9192 0.9375 0.9279
SD 0.2013 0.1998 0.2172 0.1849 0.1983

2-Approval
Mean 0.9171 0.9157 0.9042 0.9191 0.9219
SD 0.2132 0.2149 0.2299 0.2058 0.2048

Borda
Mean 0.9789 0.9792 0.9761 0.9801 0.9792
SD 0.1024 0.1021 0.1090 0.0995 0.1019

RAV
Mean 0.9982 0.9982 0.9978 0.9987 0.9984
SD 0.0367 0.0372 0.0414 0.0318 0.0353

Set 6 Set 7 Set 8 Set 9 Set 10

Plurality
Mean 0.9308 0.9226 0.9280 0.9358 0.9130
SD 0.1966 0.2110 0.1998 0.1873 0.2263

2-Approval
Mean 0.9222 0.9095 0.9152 0.9318 0.9065
SD 0.2112 0.2252 0.2130 0.1920 0.2317

Borda
Mean 0.9803 0.9778 0.9782 0.9819 0.9756
SD 0.0993 0.1208 0.1039 0.0953 0.1105

RAV
Mean 0.9985 0.9980 0.9984 0.9986 0.9975
SD 0.0333 0.0373 0.0337 0.0331 0.0443

Table 5.8: Voting results (Spearman’s ρ) for 4 candidate election.

Set 1 Set 2 Set 3 Set 4 Set 5

Plurality
Mean 0.8757 0.8851 0.8551 0.9178 0.9037
SD 0.2003 0.1853 0.2192 0.1487 0.1590

2-Approval
Mean 0.9504 0.9540 0.9511 0.9562 0.9554
SD 0.1028 0.1000 0.1032 0.0950 0.0943

Borda
Mean 0.9747 0.9762 0.9739 0.9779 0.9792
SD 0.0734 0.0717 0.0745 0.0679 0.0652

RAV
Mean 0.9962 0.9958 0.9956 0.9980 0.9982
SD 0.0365 0.0395 0.0386 0.0258 0.0246

Set 6 Set 7 Set 8 Set 9 Set 10

Plurality
Mean 0.8983 0.8835 0.8922 0.9047 0.7979
SD 0.1765 0.1940 0.1802 0.1675 0.2738

2-Approval
Mean 0.9575 0.9554 0.9536 0.9677 0.9370
SD 0.0975 0.0984 0.0993 0.0838 0.1168

Borda
Mean 0.9797 0.9765 0.9755 0.9847 0.9649
SD 0.0656 0.0710 0.0722 0.0567 0.0865

RAV
Mean 0.9976 0.9962 0.9973 0.9982 0.9929
SD 0.0278 0.0357 0.0293 0.0253 0.0496
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There are many considerations one must make when selecting a voting rule for use

within a given system. Merrill suggests that one of the most powerful metrics is Condorcet

Efficiency [93]. Table 5.9 and Table 5.10 shows the proportion of Condorcet Winners

selected by the various voting rules under study. We eliminated all elections that did not

have a Condorcet Winner in this analysis. All voting rules select the Condorcet Winner a

surprising majority of the time. The worst case is 2-Approval, when m = 3, as it results

in the lowest Condorcet Efficiency in our dataset. The high rate of elections that have a

Condorcet Winner (> 80%) could be an artifact of how we select elections. By virtue of

enforcing strict orders we are causing a selection bias in our set: we are only checking

elections where many voters have a preference between any two items in the dataset.
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Overall, we find a consensus between the various voting rules in our tests. This sup-

ports the findings of other empirical studies in the field [22, 61, 109]. Merrill finds much

lower rates for Condorcet Efficiency than we do in our study [93]. However, Merrill uses

statistical models to generate elections rather than empirical data to compute his numbers

and this is likely the cause of the discrepancy [66].

5.4.4 Statistical Models of Elections

We evaluate our dataset to see how it matches up to different probability distributions found

in the literature. We briefly detail several probability distributions (or “cultures”) here that

we test. Tideman and Plassmann provide a more complete discussion of the variety of

statistical cultures in the literature [124]. There are other election generating cultures, such

as weighted Independent Anonymous Culture, which generate preference profiles that are

skewed towards single-peakedness or single-bottomness. As we have found no support in

our analysis for restricted preference profiles we do not analyze these cultures (a further

discussion and additional election generating statistical models can be found in [124]).

We follow the general outline in Tideman and Plassmann to guide us in this study [124].

For ease of discussion we divide the models into two groups: probability models (IC,

DC, UC, UUP) and generative models (IAC, Urn, IAC-Fit). Probability models define a

probability vector over each of the m! possible strict preference rankings. We note these

probabilities as pr(ABC), which is the probability of observing a vote A > B >C for each

of the possible orderings. In order to compare how the statistical models describe the

empirical data, we compute the mean Euclidean distance between the empirical probability

distribution and the one predicted by the model.

Impartial Culture (IC): An even distribution over every vote exists. That is, for the

m! possible votes, each vote has probability 1/m! (a uniform distribution).

Dual Culture (DC): The dual culture assumes that the probability of opposite prefer-

ence orders is equal. So, pr(ABC) = pr(CBA), pr(ACB) = pr(BCA) etc. This culture is
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based on the idea that some groups are polarized over certain issues.

Uniform Culture (UC): The uniform culture assumes that the probability of distinct

pairs of lexicographically neighboring orders (that share the same top candidate) are equal.

For example, pr(ABC) = pr(ACB) and pr(BAC) = pr(BCA) but not pr(ACB) = pr(CAB)

(as, for three candidates, we pair them by the same winner). This culture corresponds to sit-

uations where voters have strong preferences over the top candidates but may be indifferent

over candidates lower in the list.

Unequal Unique Probabilities (UUP): The unequal unique probabilities culture de-

fines the voting probabilities as the maximum likelihood estimator over the entire dataset.

We determine, for each of the data sets, the UUP distribution as described below.

For DC and UC each election generates its own statistical model according to the defi-

nition of the given culture. In order to calibrate the UUP we need to determine a multino-

mial probability distribution over the vote vectors. We follow a similar method described

in Tideman and Plassmann [124]. To simplify discussion assume we have 3 candidates

(m = 3) and therefore m! = 6 possible vote vectors. Call these p1 = ABC, p2 = ACB,

p3 = BAC, p4 = BCA, p5 =CAB, and p6 =CBA.

We are calibrating UUP to some empirical (or observed) set of vote vectors. For each

observation we re-label the voters so that, in the most common order, A is first, B is second,

and C is third. Once this relabeling has occurred we want to find, for each election, the

probability vector that maximizes the log likelihood of Equation 5.1.

f (N1, . . . ,N6;N, p1, . . . , p6) =
N!

∏
6
r=1 Nr!

6

∏
r=1

pNr
r (5.1)

Where Nr is the number of votes for vector r; N is the total number of votes in an

election; and pr is the probability (proportional share) of votes received by the particular

preference ordering r. Note that 0≤ pr ≤ 1, pr = Nr/N, and ∑
6
r=1 pr = 1. When we take the
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log of this equation we end up with Equation 5.2.

g(N1, . . . ,N6;N, p1, . . . , p6) =

{
logN!− (

6

∑
r=1

logNr!)

}
+(

6

∑
r=1

Nr log pr) (5.2)

Since the term in the brackets is not dependent on the probability distribution we can

drop it from our maximization problem. So, after rewriting we want to maximize Equa-

tion 5.3.

max
pr

{
6

∑
r=1

Nr log(pr)

}
(5.3)

Using Theorem 1.2.3 from Roman [112], page 22, we know that the vector which max-

imizes this equation is exactly the vector pr from the empirical observation. So the max-

imum log-likelihood estimator for each election, according to the link function in Equa-

tion 5.1, is the empirical vector of vote shares.

In order to find the UUP distribution for an entire group of elections we have to find

a probability vector that maximizes the log-likelihood of predicting all the reordered vote

vectors. Let our set of relabeled elections be E. Again, we can drop the first term from

Equation 5.2 as it has no effect since it is a constant scalar. Let Nr,i be the number of votes

for order r ∈ R for election i ∈ E. Rewriting Equation 5.3 for all elections gives us an

equation for our UUP distribution.

UUP = max
pr

{
6

∑
r=1

(
∑
i∈E

Nr,i

)
log(pr)

}
(5.4)

With this equation we can again apply Theorem 1.2.3 from Roman [112]. Let

M =
6

∑
r=0

∑
i∈E

Nr,i.

And let

Sr = ∑
i∈E

Nr,i.
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Then we can rewrite Equation 5.4 and are left with Equation 5.5.

∀r ∈ {1, . . . ,6} : pr =
Sr

M
(5.5)

We can expand the above maximization problem for all 24 possible vectors when m= 4.

To compute the error between the culture’s distribution and the empirical observations, we

re-label the culture distribution so that the preference order with the most votes in the

empirical distribution matches the culture distribution and compute the error as the mean

Euclidean distance between the discrete probability distributions.

Urn Model: The Polya Eggenberger urn model is a method designed to introduce

some correlation between votes and does not assume a complete uniform random distri-

bution [11]. We use a setup as described by Walsh [130]; we start with a jar containing

one of each possible vote. We draw a vote at random and place it back into the jar with

a ∈ Z+ additional votes of the same kind. We repeat this procedure until we have created a

sufficient number of votes.

Impartial Anonymous Culture (IAC): Every distribution over orders has an equal

likelihood. For each generated election we first randomly draw a distribution over all the

m! possible voting vectors and then use this model to generate votes in an election.

IAC-Fit: For this model we first determine the vote vector that maximizes the log-

likelihood of Equation 5.1 without the reordering described for UUP. Using the probability

vector obtained for m = 3 and m = 4 we randomly generate elections. This method gener-

ates a probability distribution or culture that represents our entire dataset.

For the generative models we must generate data in order to compare them to the culture

distributions. To do this we average the total elections found for m = 3 and m = 4 and

generate 1,400,352 and 1,132,636 elections, respectively. We then draw the individual

election sizes randomly from the distribution represented in our dataset. After we generate

these random elections we compare them to the probability distributions predicted by the

various cultures.
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Table 5.11: Mean Euclidean distance between the empirical data set and different statistical
cultures (standard error in parentheses) for elections with 3 candidates.

IC DC UC UUP
Set 1 0.3064 (0.0137) 0.2742 (0.0113) 0.1652 (0.0087) 0.2817 (0.0307)
Set 2 0.3106 (0.0145) 0.2769 (0.0117) 0.1661 (0.0089) 0.2818 (0.0311)
Set 3 0.3005 (0.0157) 0.2675 (0.0130) 0.1639 (0.0091) 0.2860 (0.0307)
Set 4 0.3176 (0.0143) 0.2847 (0.0113) 0.1758 (0.0100) 0.2833 (0.0332)
Set 5 0.2974 (0.0125) 0.2677 (0.0104) 0.1610 (0.0082) 0.2774 (0.0300)
Set 6 0.3425 (0.0188) 0.3027 (0.0143) 0.1734 (0.0108) 0.3113 (0.0399)
Set 7 0.3043 (0.0154) 0.2704 (0.0125) 0.1660 (0.0095) 0.2665 (0.0289)
Set 8 0.3154 (0.0141) 0.2816 (0.0114) 0.1712 (0.0091) 0.2764 (0.0318)
Set 9 0.3248 (0.0171) 0.2906 (0.0130) 0.1686 (0.0100) 0.3005 (0.0377)

Set 10 0.2934 (0.0144) 0.2602 (0.0121) 0.1583 (0.0087) 0.2634 (0.0253)
Urn 0.6228 (0.0249) 0.4745 (0.0225) 0.4745 (0.0225) 0.4914 (0.1056)
IAC 0.2265 (0.0056) 0.1691 (0.0056) 0.1690 (0.0056) 0.2144 (0.0063)

IAC-Fit 0.0363 (0.0002) 0.0282 (0.0002) 0.0262 (0.0002) 0.0347 (0.0002)

Table 5.12: Mean Euclidean distance between the empirical data set and different statistical
cultures (standard error in parentheses) for elections with 4 candidates.

IC DC UC UUP
Set 1 0.2394 (0.0046) 0.1967 (0.0031) 0.0991 (0.0020) 0.2533 (0.0120)
Set 2 0.2379 (0.0064) 0.1931 (0.0042) 0.0975 (0.0023) 0.2491 (0.0127)
Set 3 0.2633 (0.0079) 0.2129 (0.0051) 0.1153 (0.0032) 0.2902 (0.0159)
Set 4 0.2623 (0.0069) 0.2156 (0.0039) 0.1119 (0.0035) 0.2767 (0.0169)
Set 5 0.2458 (0.0044) 0.2040 (0.0028) 0.1059 (0.0027) 0.2633 (0.0138)
Set 6 0.3046 (0.0077) 0.2443 (0.0045) 0.1214 (0.0040) 0.3209 (0.0223)
Set 7 0.2583 (0.0088) 0.2094 (0.0053) 0.1060 (0.0038) 0.2710 (0.0161)
Set 8 0.2573 (0.0052) 0.2095 (0.0034) 0.1059 (0.0023) 0.2508 (0.0145)
Set 9 0.2981 (0.0090) 0.2414 (0.0049) 0.1202 (0.0045) 0.3258 (0.0241)

Set 10 0.2223 (0.0046) 0.1791 (0.0035) 0.1053 (0.0021) 0.2327 (0.0085)
Urn 0.6599 (0.0201) 0.4744 (0.0126) 0.4745 (0.0126) 0.6564 (0.1022)
IAC 0.1258 (0.0004) 0.0899 (0.0004) 0.0900 (0.0004) 0.1274 (0.0004)

IAC-Fit 0.0463 (0.0001) 0.0340 (0.0001) 0.0318 (0.0001) 0.0472 (0.0001)

Table 5.11 and Table 5.12 summarizes our results for the analysis of different statistical

models used to generate elections. In general, none of the probability models captures our

empirical data. Uniform Culture (UC) has the lowest error in predicting the distributions

found in our empirical data. We conjecture that this is due to the process by which we select
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movies and the fact that these are ratings on movies. Since we require strict orders and,

generally, most people rate good movies better than bad movies, we obtain elections that

look like UC scenarios. By this we mean that The Godfather is an objectively good movie

while Mega Shark vs. Crocosaurus is pretty bad. While there are some people who may

reverse these movies, most users will rate The Godfather higher. This gives the population

something close to a UC when investigated in the way that we do here.

The data generated by our IAC-Fit model fits very closely to the various statistical

models. This is most likely due to the fact that the distributions generated by the IAC-Fit

procedure closely resemble an Impartial Culture (since our sample size is so large). We,

like Tideman and Plassmann, find little support for the static cultures’ ability to model real

data [124]

5.5 Observations and Summary

In this chapter we have identified and thoroughly evaluated a novel dataset as a source of

sincere election data. We find overwhelming support for many of the existing conclusions

in the empirical literature. Namely, we find a high consensus among a variety of voting

methods; low occurrences of Condorcet’s Paradox and other voting cycles; low occur-

rences of preference domain restrictions such as single-peakedness; and a lack of support

for existing statistical models which are used to generate election pseudo-data. Our study

is significant as it adds more results to the current discussion of what an election is and how

often voting irregularities occur. Voting is a common method by which agents make deci-

sions both in computers and as a society. Understanding the statistical and mathematical

properties of voting rules, as verified by empirical evidence across multiple domains, is an

important step. We provide a new look at this question with a novel dataset that is several

orders of magnitude larger than the sum of the data in previous studies.

This chapter represents an initial foray into empirically testing properties of elections.

While we have not directly addressed the questions of manipulation and bribery with our
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empirical study, we have laid the groundwork. This chapter provides us with perspective

on the overall discussion of voting rules. By testing some of the theoretical properties of

voting rules, and coming to the conclusion that some of the theoretical results are of little

practical importance, we establish that more needs to be done to develop the empirical

side of ComSoc. This empirical work is very much in the spirit of the overall ComSoc

approach: we are using computational tools (data mining and access to extremely large

sets of preference data) to address concerns in the social choice community. It is our hope

that, with this dataset, we inspire others to look for novel datasets and empirically test some

of their theoretical results.

Copyright c© Nicholas Mattei, 2012.
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