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Abstract

Balanced knockout tournaments are one of the most common
formats for sports competitions, and are also used in elec-
tions and decision-making. We consider the computational
problem of finding the optimal draw for a particular player
in such a tournament. The problem has generated consider-
able research within AI in recent years. We prove that check-
ing whether there exists a draw in which a player wins is
NP-complete, thereby settling an outstanding open problem.
Our main result has a number of interesting implications on
related counting and approximation problems. We present a
memoization-based algorithm for the problem that is faster
than previous approaches. Moreover, we highlight two nat-
ural cases that can be solved in polynomial time. All of our
results also hold for the more general problem of counting the
number of draws in which a given player is the winner.

Introduction
Balanced knockout tournaments are one of the most widely-
used formats for sports competitions (Horen and Riezman
1985; Connolly and Rendleman 2011; Groh et al. 2012).
A prominent example is the Wimbledon Men’s tennis tour-
nament in which 128 players enter the tournament and the
player who wins seven consecutive matches right from the
first round to the final wins the tournament. The format is
also used in certain elimination style election and decision
making schemes and has received considerable interest in
AI (Vu, Altman, and Shoham 2009; Vassilevska Williams
2010) as well as economics and operations research (Rosen
1986; Vu et al. 2013; Tullock 1980; Laslier 1997).

Consider the setting in which there is a set of players
N = [n] (we use the notation [n] := {1, . . . , n}) where
n = 2c for some integer c. Given N , an ordered balanced
knockout tournament T(N, π) is defined as a balanced bi-
nary tree with n leaf nodes where the seeding π specifies
the labelling of the leaf nodes with respect to N . All or-
dered balanced knockout tournaments that are isomorphic to
each other (with respect to the labelling of the leaf nodes) are
said to have the same draw. They are represented by a single
(unordered) balanced knockout tournament (BKT) T(N, σ)
where σ denotes the draw. The set of all draws is denoted
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by Σ. Whereas the total number of seedings is n!, the num-
ber of draws is n!

2n−1 but even this grows very rapidly. For
a tournament like Wimbledon, n = 128 and the number of
distinct draws is 2.3 ∗ 10177. This is significantly more than
the number of atoms in the universe, or even a googol.

A BKT T(N, σ) is conducted in the following fashion.
Players that correspond to sibling leaf nodes play a match
against each other. The winner of the match proceeds up the
tree to the next round. The winner of T(N, σ) is the player
who reaches the root node. We are given a pairwise com-
parison matrix P such that Pjk ∈ [0, 1] denotes the prob-
ability of player j beating player k in a pairwise elimina-
tion match and 0 ≤ Pij = 1 − Pji ≤ 1. Given N , P
and a draw σ, each player i ∈ N has a certain probability
wp(i,N, P, σ) of being the winner of T(N, σ). This prob-
ability can be computed in time O(n2) via a recursive for-
mulation (Vu, Altman, and Shoham 2009). We denote by
mwp(i,N, P ) := maxσ∈Σ(wp(i,N, P, σ)) the maximum
possible winning probability of i in T(N, σ) taken over all
draws σ ∈ Σ.

We consider the PROBABILISTIC TOURNAMENT FIXING
PROBLEM (PTFP) in which the probability of each player
beating another player is known and the goal is to find a
draw that maximizes the probability of a certain player
winning the BKT.

PROBABILISTIC TOURNAMENT FIXING PROBLEM
(PTFP)
Instance: Player set N , pairwise comparison matrix P ,
a distinguished player i∗ ∈ N , and target probability
q ∈ [0, 1].
Question: Does there exist a draw σ for the player set N
for which the probability of i∗ winning T(N, σ) is at least q?

PTFP was proposed by Vu, Altman, and Shoham (2009)
and has been studied in numerous papers (see e.g.,
(Stanton and Vassilevska Williams 2011a; 2011c;
2011b)). It is a well-motivated problem in sports ana-
lytics (Silver 2011). Vu, Altman, and Shoham (2009) and
Vassilevska Williams (2010) showed that PTFP is NP-hard
for various restrictions. These results also imply that
computing the maximum possible winning probability of a
given player is NP-hard. Nevertheless, the computational
complexity of a particularly natural and interesting problem,



the TOURNAMENT FIXING PROBLEM (TFP), has remained
a major open question. In the TFP, P is deterministic i.e.,
Pjk ∈ {0, 1} for all players j, k ∈ N . We say that player
j beats player k iff Pjk = 1. The winner of each match
is deterministically known beforehand and the question is
whether there exists a draw for which a given player can
win in the corresponding BKT.

TOURNAMENT FIXING PROBLEM (TFP)
Instance: Player set N , deterministic pairwise comparison
matrix P , and a distinguished player i∗ ∈ N .
Question: Does there exist a draw σ for the player set N
for which i∗ is the winner of T(N, σ)?

TFP is equivalent to checking whether there exists a seed-
ing π for which i is the winner of T(N, π). We note that TFP
is a special case of the problem with same name as defined
in (Vassilevska Williams 2010).1 TFP is also a special case
of #TFP — the problem of counting the number of draws for
which a given player is the winner. This count can be used to
compute the probability of a player winning in a draw cho-
sen uniformly at random. It can also be considered as the
relative strength of the player.

Contributions. We first settle the computational complex-
ity of TFP by showing that it is NP-complete. The prob-
lem was explicitly stated as an open problem a number of
times (Vu, Altman, and Shoham 2009; Vassilevska Williams
2010; Russell and van Beek 2011; Stanton and Vassilevska
Williams 2011b; 2011a; 2011c; Lang et al. 2012; Vu et al.
2013). As a corollary, we show that unless P = NP, there ex-
ists no polynomial-time approximation algorithm for com-
puting the maximal winning probability of a player. The in-
approximability result provides additional motivation for the
line of work in which heuristic algorithms have been pro-
posed for PTFP (Vu et al. 2013). Another corollary is that
there exists no fully polynomial time randomized approxi-
mation scheme (FPRAS) for counting the number of draws
for which a player is the winner.

In view of these intractability results, we identify two nat-
ural cases for which even #TFP can be solved in polynomial
time. In the first case, the players can be divided into a con-
stant number of player types. It appeals to the scenario where
players can be divided into groups based on similar intrin-
sic ability. In the second case, there is a linear ordering on
the ability of players with a constant number of exceptions
where a player with lower ability beats a player with higher
ability.2 Finally, we provide an exact memoization-based al-
gorithm to solve #TFP that is faster than known exact ap-

1In the version of TFP defined in (Vassilevska Williams 2010),
there can be additional constraints in which certain matches are
disallowed.

2The condition is quite natural since in many competitions there
is a clear-cut ranking of the players according to their skills with
only a few pairs of players for which the weaker player can beat
the stronger player. For example, as of 15/01/2014, Nikolay Davy-
denko was the only tennis player among the men’s top 64 who had
a winning head-to-head record against Rafael Nadal.

proaches to solve the problem: it runs in time O(2.8285n)
and uses space O(1.7548n). If only polynomial space is
available, the running time becomes 4n+o(n), and we give
a range of possible time-space trade-offs.

Related Work. After the work of Vu, Altman, and
Shoham (2009), PTFP and TFP have been studied in a
number of AI papers. Vassilevska Williams (2010) identi-
fied various sufficient conditions for a player to be a win-
ner of a BKT. In a followup paper, Stanton and Vassilevska
Williams (2011c) focused on when weak players can possi-
bly win a BKT. Stanton and Vassilevska Williams (2011b;
2011a) identified conditions in a probabilistic model under
which the tournament organizer can fix the tournament with
high probability. In (Vu and Shoham 2011), the problem of
designing ‘fair’ draws was considered. Lang et al. (2007)
and Lang et al. (2012) examined winner determination in
voting trees that need not be balanced.

TFP can also be considered as the problem of checking
whether a player is a possible winner in a BKT. Comput-
ing possible winner for other voting rules where the infor-
mation on the preferences is not complete has been studied
extensively (Xia and Conitzer 2011; Aziz et al. 2012). An-
other related problem is checking whether a sports team can
still win a round-robin competition when all the matches
have not yet been completed (Kern and Paulusma 2004;
Gusfield and Martel 2002).

TFP is NP-complete
In this section, we settle the complexity of TFP. For conve-
nience, we will represent the pairwise comparison matrix P
as a graph where an edge from i to j exists iff i beats j.
Theorem 1. TFP is NP-complete.

Proof. We reduce from the NP-hard variant of the 3SAT
problem in which every literal appears at most twice.
Given such a 3SAT instance F = (X,C) where X =
{x1, . . . , x|X|} is the set of variables and C the set of
clauses, we build an instance of TFP where a draw exists
such that a distinguished player m1 wins iff F is satisfi-
able. The TFP instance consists of a set of players N =
{1, . . . , n} where n is the smallest power of 2 greater than
32 · |X|. The resulting knock-out tournament will thus con-
sist of R := dlog(32 · |X|)e − 1 ≥ 5 rounds where the
first (lowest) four rounds will be used to store the gadgets
while the later rounds will enforce certain outcomes for the
gadgets. We can decompose the set of players N as follows

N = M ∪̇ S ∪̇GX ∪̇GCG ∪̇GF (1)

where players in GX are used in the choice gadgets that will
model the variable assignment, players in GCG are used in
the clause/garbage gadgets that will model the behaviour of
the clauses, and players in GF are used in filler gadgets that
will be used to balance the BKT. Players in S are special
players that will ensure the connection between choice and
clause gadgets. Finally we will show that for m1 to win the
BKT, all k := n

16 players in M = {m1,m2, . . . ,mk} will
have to proceed to the fifth round. We will use a total of
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Figure 1: The spawning process. By the shown draw, the
leftmost player can win the BKT.

k gadgets where each mi will be associated with one par-
ticular gadget. This gadget will ensure that mi can proceed
to the fifth round. More precisely, we use |X| choice gad-
gets numbered from 1 to |X|, |X| clause/garbage gadgets
(that may each contain multiple clauses) numbered from
|X| + 1 to 2|X| and (k − 2|X|) filler gadgets numbered
from (2|X|+ 1) to k. Using this numbering, we can further
partition the above sets as follows:

GX =

|X|⋃̇
j=1

Gj ; GCG =

2|X|⋃̇
j=|X|+1

Gj ; GF =

k⋃̇
j=2|X|+1

Gj (2)

Note that the sets Gj have 10, 13 or 15 elements, depending
on whether they are a subset ofGX,GCG orGF, respectively.

Set M . The relation between elements of the set of win-
ners M is recursively defined via a linear ordering of play-
ers as follows: We start with player m1. At each iteration,
every player a spawns a new player b placed directly to his
right. In the pairwise comparison graph, each player beats all
players to his left in this construction except for the one that
spawned him. This recursive construction is repeated until a
total of k players are present (see Figure 1).

Lemma 1. There is a draw σ such that m1 wins the BKT
T (M,σ).

Proof. Seeding all players in M from left to right according
to the spawning process makes m1 win the tournament (see
Figure 1): Whenever two players meet, the left player in the
match has spawned the right player, thus the left player wins.
As the leftmost player, m1 wins the tournament.

Global structure. We now describe how the sets from (1)
and (2) relate to each other. In many places, we will use the
right-left-rule, that is elements from sets with a higher in-
dex will beat elements from sets with a lower index. For
instance, for all j > j′ and elements i ∈ {mj} ∪ Gj ,
i′ ∈ {m′j′} ∪ Gj where (i, i′) 6= (mj ,mj′) we have that
i beats i′. All members of S beat all other players unless ex-
plicitly stated otherwise. The set S can be partitioned into
subsets Sj corresponding to each variable of the SAT in-
stance, such that ∀j ∈ [|X|] : Sj = Sxj

∪̇ Sx̄j
∪̇ {s∗j} where

s∗j
Sxj
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xj

s2
xj
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uj
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Figure 2: Pairwise comparisons in the j-th choice gadget.
All arrows not shown in the figure run downwards, horizon-
tal arcs run right to left. Vertices grouped in a component
have the same relation with vertices outside the component.

|Sxj | = 3 and |Sx̄j | = 3. We further define the set of parti-
cles (these will move between the choice and clause/garbage
gadgets) by Sp :=

⋃
j∈[|X|](Sxj ∪̇Sx̄j ). The members of Sp

follow the right-left rule between each other, i.e., for j > j′,
elements from Sxj and Sx̄j beat elements from Sxj′ and
Sx̄j′ . The players in {s∗j | j ∈ [|X|]} follow the right-left
rule amongst themselves. For each j ∈ [|X|], s∗j is beaten by
all other members of Sj and beats all members of Sp \ Sj .

Choice gadget. For each j ∈ [|X|], the j-th choice gad-
get consists of player mj , all ten elements of Gj and all of
Sj . Note that some elements of Sj will appear again in the
clause/garbage gadgets. The pairwise comparison graph for
these elements (for fixed j) is shown in Figure 2. The choice
gadget is structured in such a way that it is possible for mj

to win a subtournament composed of all elements in the gad-
get except two elements of either Sxj

or Sx̄j
, as illustrated

in Figure 4. We will also show that this is the only way in
which mj can reach the fifth round in a tournament won by
m1.

Clause/garbage gadget. We now describe the internal
structure of the clause/garbage gadgets. The j-th gadget con-
sists of mj and the 13 elements of Gj , two of these are de-
noted c/g. The pairwise comparison graph for these players
is shown in Figure 3. For each clause ci ∈ C we will call one
of the players denoted c/g associated with clause ci, all re-
maining players c/g are garbage players. All players shown
in the figure are beaten by all players in S with the follow-
ing exceptions: (i) garbage players beat all players from Sp,
(ii) players associated with clause ci beat all players from the
set Sxj

or Sx̄j
if xj or x̄j occurs in clause ci, respectively.

The clause gadget is structured in such a way that it is
possible for mj to win a subtournament composed of all el-
ements in the gadget with the addition of a compatible Sp
element for both clause/garbage players included. We will
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Figure 3: Pairwise comparison graph for a clause/garbage
gadget. All arrows not shown in the figure run downwards,
horizontal arcs run right to left.
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Figure 4: The subtournament for choice gadget j. In this
case, xj=true is selected.

also show that if we want m1 to win the tournament, this is
the only way in which mj can reach the fifth round.

The filler gadget j consists of mj and the players in set
Gj . To create the pairwise comparison graph relating them
to one another, we use the same method of spawning new
players as for M , starting from player mj (see Figure 1).

We note that for all j ∈ [k], player mj beats exactly four
players from the set Gj .

Lemma 2. For all j ∈ [k] the following hold:

a) Let σ be a draw where ∀i < j, player mi reaches the fifth
round by winning a 16-player subtournament that con-
tains all players from Gi and mj plays against all four
players from Gj that he beats. Then, the 16-player sub-
tournament by which mj proceeds to the fifth round con-
sists exactly of:
i) if the j-th gadget is a choice gadget: {mj} ∪̇ Gj ∪̇ Sj

where two elements of either Sxj
∪̇{s∗j} or of Sx̄j

∪̇{s∗j}
are removed,

ii) if the j-th gadget is a clause/garbage gadget: {mj} ∪̇
Gj and for each of the c/g players inGj one additional
element of Sp that he can beat,

iii) if the j-th gadget is a filler gadget: {mj} ∪̇Gj .
b) If the 16-player subtournament for the first four rounds in

which mj is placed consists exactly of i), ii), or iii) for
the respective type of the j-th gadget, then a draw for the
subtournament exists by whichmj reaches the fifth round.

The proof of Lemma 2 is easy but lengthy and thus omit-
ted. Figure 4 shows the relevant subtournament for a choice
gadget. We can now show the following, which will also
show that for all j ∈ [k] the antecedent of Lemma 2a) is
satisfied and thus the consequent holds.

Lemma 3. For m1 to win the tournament, all players mj ∈
M must reach the fifth round, winning a 16-player subtour-
nament that contains all players from Gj by playing against
all four players from Gj that they can beat.

Proof. Let M` denote the set of 2` players from M that are
present after the `-th iteration of the spawning process. Fur-
thermore, denote by `j the smallest ` such that mj ∈ M`.
We use induction over the set M . The induction will pro-
ceed from left to right according to the order specified in the
description of the spawning process. First, note that for all
j ∈ [k], playermj beats exactly (R−4−`j) players fromM
that are to his right. The induction hypothesis is as follows.

In order for m1 to win the tournament, the following
must hold for all j ∈ [k]:
(i) In some round, mj plays against the player that
spawned him, (ii) mj must reach round (R + 1 − `j)
and be beaten in that round, (iii) mj plays against all
players from Gj that he can beat, (iv) the subtourna-
ment consisting of the first four rounds that mj wins
contains all players from Gj .

For the base case, consider m1. For (i) and (ii) there is
nothing to show, as m1 must win the tournament. As m1

only beats a total of R players, he needs to play against
all of these, which proves Part (iii). Part (iv) is implied by
Lemma 2.

We now show that for a player mj ∈ M , the induction
hypothesis holds, provided that it holds for all playersmj′ ∈
M with j′ < j. Consider the player mj∗ that spawned mj .

For (i), note that by the induction hypothesis, all players
from G′j with j′ < j∗ have to be placed in the subtour-
nament won by mj′ . Similarly, all players mj′ with j′ < j∗

have to play (and lose) against the player that spawned them,
therefore they cannot play against mj∗ (as they would lose).
Thus, mj∗ can only play against players from Gj∗ and play-
ers mr from M to mj∗ ’s right and the respective sets Gr.
He beats exactly four players in Gj∗ , none in the other Gj
and (R− 4− `j∗) from M to his right. By the induction hy-
pothesis, he thus needs to play against all of these (including
mj) to proceed to round (R+ 1− `j∗).

For (ii), note that to the left of mj there are (R − 4 −
`j) other players that are spawned by mj∗ . Denote them by
mj∗1

,mj∗2
, . . . ,mj∗R−4−`j

and note that R+ 1− `j∗i = i+ 4.
Thus,mj cannot facemj∗ in round 5, 6, . . . , R−`j (as other
players need to play against mj∗ in these rounds) and has
to proceed at least until round (R + 1 − `j). By the same
argument as for mj∗ above, before mj faces mj∗ , he can
only play against players fromGj and playersmr fromM to
mj’s right and the respective setsGr. Playermj only beats a
total of R− `j players among these, thus mj must be beaten
in roundR−`j . Furthermore, he must play against all of the
above players that he can beat, which settles Part (iii).

Again, Part (iv) is implied by Lemma 2 as by the argument
above,mj needs to play against all four players fromGj that
he can beat.

We can now finally show the following lemma.

Lemma 4. There exists a draw such that m1 wins the tour-
nament if and only if the SAT instance is satisfiable.

Proof. First, note that by Lemma 1 and Lemma 3, m1 can
win the tournament iff all players from the set M reach the



fifth round. As only |M | players can reach the fifth round
in total, m1 can win the tournament iff each player mj ∈
M can win a 16-player subtournament that consists exactly
of the players stated in Lemma 2. We thus have to show
that a draw in which each player mj ∈ M wins a 16-player
subtournament with exactly the players stated in Lemma 2
exists iff the 3SAT instance is satisfiable.

(⇐) Let the formula F be satisfied by a truth assignment
A. We construct a BKT over N in which m1 wins. For all j
where the j-th gadget is a choice gadget, we place all players
from {mj} ∪̇ Gj ∪̇ Sj with the exception of two players
from Sxj (if A(xj) = true) or Sx̄j (if A(xj) = false) in one
subtournament for the first four rounds. These are exactly 16
players and by Lemma 2b), we can choose the draw in such
a way that mj wins the subtournament.

Note that the choice gadgets use all players from S except
for two players of each set Sxj (or Sx̄j ) where xj (or x̄j) is a
literal that evaluates to true. In other words, for every literal
that evaluates to true, two players remain that can be beaten
by every player associated with a clause in which the literal
players appear.

For the clause/garbage gadgets, to use Lemma 2b) we
need for each c/g player one additional player that he beats.
If c/g is associated with a clause ci ∈ C, pick one of the
literals in ci that evaluates to true, say x̄j , and assign one of
the two players from Sx̄j

mentioned above to this c/g player.
Note that at most two such players are required for any lit-
eral, as every literal only appears twice. To all garbage play-
ers, assign an arbitrary remaining player from set S. Note
that, after composing the subtournaments for all choice gad-
gets, 2|X| players from the set S were left. As there are 2|X|
c/g players, we can assign a player from S to each of these.
For all j where the j-th gadget is a clause/garbage gadget,
we now place all players from {mj} ∪̇Gj in one subtourna-
ment for the first four rounds, together with the two players
that are assigned to the c/g players in Gj . By Lemma 2b),
we can chose a draw such that mj wins this subtournament.
For all j where the j-th gadget is a filler gadget, we place
all players from {mj} ∪̇Gj in one tournament for which, by
Lemma 2b), we can find a draw where mj wins.

(⇒) Let a draw be given such that all players in M win
a 16-player subtournament consisting exactly of the players
stated in Lemma 2. First, note that whenever a player s∗j is
not placed in the j-th choice gadget, we get a contradiction
as by Lemma 2, this player cannot be placed anywhere else
while all players from M still reach the fifth round. The fol-
lowing truth assignment is thus well-defined: A(xj) = true
if mj’s subtournament includes all players from Sj except
two players from Sxj , A(xj) = false if mj’s subtournament
includes all players from Sj except two players from Sx̄j

We now show that A satisfies all clauses. Let ci ∈ C be
a clause and c/g the player associated with that clause. Let
j∗ be the 16-player subtournament including c/g. By the as-
sumption, mj∗ wins the subtournament, thus Lemma 2 im-
plies that it contains a player that c/g beats, i.e. a player from
set Sxj

or (Sx̄j
) where xj or (x̄j) occurs in clause Ci. By

the definition of A, that player can only be used in the sub-
tournament if the corresponding literal evaluates to true (as
otherwise, the player is used in mj’s subtournament).

This concludes the proof of the theorem.

Implications of Theorem 1
Theorem 1 simultaneously implies a number of results from
the literature, in particular Theorem 1, 2, and 3 in (Vu, Alt-
man, and Shoham 2009) and Theorem 1 in (Vassilevska
Williams 2010). It also yields some further corollaries. For
PTFP and α ≥ 1, an algorithm is called an α-approximation
algorithm for the maximum winning probability if it can find
a draw in which the winning probability of the given player
i is at least mwp(i,N, P )/α.

Corollary 1. Unless P = NP, there exists no polynomial-
time algorithm for PTFP that approximates the maximum
winning probability of a player within any given factor.

It immediately follows from Theorem 1 that #TFP is
NP-hard. We next highlight that even randomisation is not
very helpful for #TFP. Let Γ be a finite alphabet in which
we agree to describe our problem instances and solutions.
A fully polynomial time randomized approximation scheme
(FPRAS) for a function f : Γ∗ → Q is an algorithm that
takes input x ∈ Γ∗ and a parameter ε ∈ Q>0, and returns
with probability at least 3

4 a number between f(x)/(1 + ε)
and (1 + ε)f(x). Moreover, an FPRAS runs in time polyno-
mial in the size of x and 1/ε. RP is the complexity class con-
sisting of problems that can be solved in randomized polyno-
mial time. The statement below follows from Proposition 8
in (Welsh and Merino 2000) and Theorem 1.

Corollary 2. Unless NP = RP, there is no FPRAS for #TFP.

Hence, unless NP = RP, there also does not exist an
FPRAS for computing the probability of a player winning
a BKT for a draw chosen uniformly at random.

Tractable Cases
We first examine a natural case in which players are divided
into player types: All players of one type beat exactly the
same subset of players of other types. The result of matches
between players of the same type is irrelevant as we do not
care which player in each type wins. In this variant that
we call #TFP-types, the objective is to count the number
of draws for which a player of a given type wins. We first
adapt the concept of the pairwise comparison matrix. For
two player types i and j, define Pij = 1 if an i-player wins a
match between i and j and Pij = 0 otherwise. Note that this
definition is chosen such that Pii = 1 for all player types i.

Theorem 2. #TFP-types is polynomial-time solvable if
there are a constant number of player types.

Proof. We will use a dynamic programming scheme. All
vectorial inequalities assume equal dimensions and are
meant component-wise. Let Nx := {η = (η1, . . . , ηk) ≥
0 | η1 + · · ·+ηk = 2x} and denote by #TFP(i, x, η ∈ Nx)
the number of draws for an x-round tournament involving
ηj players of type j for all j ∈ [k] in which a player of type
i wins the tournament. We will assume that the players of
one type are not distinguishable. For fixed i and x, there are



(
k+2x

k

)
such problems that potentially need to be considered.

#TFP(i, x, η) is computed via the following recursion.

#TFP(i, x, η) =
∑

η′∈Nx−1

η′≤η

#TFP(i, x− 1, η′)

·
∑
j∈[k]
Pij=1

η′j<ηj

#TFP(j, x− 1, η − η′) (3)

The base cases are given by

#TFP(i, 0, η) =

{
1 ηi = 1 and ∀j 6= i : ηj = 0

0 otherwise
(4)

for all i ∈ [k]. Eq. (3) only uses values of #TFP(j, y, η′)
with y < x, thus every problem only needs to be solved
once. For constant k, solving a problem requires O(nk) op-
erations and for constant k it holds that

(
k+2x

k

)
∈ O(nk).

Thus, O(log(n)n2k) operations are necessary to compute
#TFP(i, log(n), (n1, . . . , nk)).

The second tractable case that we identify is:

Theorem 3. #TFP is polynomial-time solvable if there is
a linear ordering of strengths of the players with at most a
constant number of pairwise relations flipped.

Proof. Let b be the number of backwards arcs that do not
respect the linear ordering. We can show by induction that
the problem can be reduced to #TFP-types with at most 4b+
3 player types. Since the number of player types is constant,
the theorem follows from Theorem 2.

An Exponential Time Algorithm for #TFP
#TFP can be trivially solved in time 2O(n logn) via a brute-
force enumeration of all possible draws. In exponential time
algorithmics (Fomin and Kratsch 2010), the aim is to de-
sign algorithms solving the problem exactly with worst-
case running times outperforming the brute-force solution.
In this section we give an algorithm for #TFP running in time
O(2.8285n) using space O(1.7548n). If only polynomial
space is available, the running time becomes 4n+o(n), and
we give a range of possible time-space trade-offs. The algo-
rithm is based on the recursion formula (3) and memoization
used at various levels of the recursion. We use poly(n) to
stand for a polynomial function in n.

Theorem 4. For every y, 2 ≤ y ≤ log n, there is an algo-
rithm solving #TFP in time T (n) = poly(n)·

∏y−1
p=0

n
2p ·2n/2

p

and space S(n) = poly(n) · (2y)n/2
y ·
(

2y

2y−1

)n−n/2y

.

Proof Sketch. The algorithm recursively evaluates the for-
mula (3) for the special case where each player type consists
of one player, starting from #TFP(i, log n, (1, . . . , 1)).
It uses memoization for all recursive calls #TFP(·, x, ·)
where x ≤ (log n) − y. That is, the algorithm uses a ta-
ble indexed by players, level, and player type vector. To

y time T (n) space S(n)
2 O(2.8285n) O(1.7548n)
3 O(3.3636n) O(1.4576n)
4 O(3.6681n) O(1.2634n)

logn 4n+o(n) poly(n)

Table 1: Running times and space requirements for the algo-
rithm of Theorem 4 for various time-space trade-offs.

evaluate #TFP(·, x, ·) with x ≤ (log n) − y, the algo-
rithms first checks in this table whether this recursive call
has already been evaluated. Only if the value has not yet
been computed, it computes the result recursively, and stores
it in the table. Then, it returns the result that is stored in
the table. The number of table entries used by memoiza-
tion is upper bounded by n times the number of subsets
of size at most n/2y . Using Stirling’s approximation for
factorials, the space usage of the algorithm can be upper

bounded by S(n) = poly(n) · (2y)n/2
y ·
(

2y

2y−1

)n−n/2y

.
The running time of the algorithm is the time used for the
recursion without memoization, poly(n) · Πy−1

p=0
n
2p · 2n/2

p

,
plus the time for the part with memoization, which is up-
per bounded by S(n) · n · 2n/4 = O(2.0868n). Thus, for
any y, 2 ≤ y ≤ log n, we obtain an algorithm with run-
ning time T (n) = poly(n) · Πy−1

p=0
n
2p · 2n/2

p

using space

S(n) = poly(n) · (2y)n/2
y ·
(

2y

2y−1

)n−n/2y

.

Various time and space requirements of the algorithm are
reported in Table 1. Using the rule of thumb that for current
computing architectures, the space requirements of an algo-
rithm become a bottleneck if they exceed the square root of
the time requirements, the analyses for y = 2 and y = 3
currently seem the most relevant.

Conclusions
In this paper we considered problems related to tournament
fixing. Although being able to change draws is not always
realistic, the computational problems that are considered
have been analyzed in post analysis of tournament draws and
also shed light on the relative strengths of players. Our main
result is that TFP is NP-complete. We discussed a number
of implications of the result. We complement the computa-
tional hardness result in the paper by presenting algorithms
for #TFP — both for the general case as well as restricted
cases. A possible future direction is to propose parametrized
algorithms for TFP.
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